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Abstract—In this study, acceleration techniques for the primal-
dual splitting (PDS) algorithm, one of the optimization algo-
rithms used to restore high-dimensional signals, are proposed.
In general, it is inevitable that signals observed by sensors
are incompletely measured and/or contaminated by noise. Thus,
there is a demand for techniques to restore signals obtained
in inadequate environments. Restoration of high-dimensional
signals such as volumetric data often takes several hours or
even days. Therefore, speeding up the restoration process is
an important issue. This study addresses this issue in two
different ways. First, acceleration methods are introduced into
PDS. Second, their fixed-point implementations are introduced.
In order to verify the significance of the proposed approach, the
restoration performance and processing speed are evaluated and
compared with previous techniques.

I. INTRODUCTION

Today, with the advancement of imaiging technology, image
data have developed from two-dimensional (2-D) to three-
dimensional (3-D). As well, the resolution of images has
increased, and the volume have become larger. Particularly
in medical diagnosis and bio-science, magnetic resonance
imaging (MRI), computed tomography (CT), and optical co-
herence tomography (OCT) are used to observe the brain,
internal organs, and other parts of living bodies without
actually making incisions, contributing to the early detection of
diseases and the elucidation of biological functions [1]. On the
other hand, it is unavoidable that signals captured by sensors
are generally affected by noise and degradation caused by
measurement devices to some extent. For this type of sensing,
signal processing is essential to remove noise caused during
the observation process and to recover signals measured under
tough environments.

Convex optimization is one of the methods used in the
restoration process. Among convex optimiation algorithms, the
proximal splitting approachs are known to be able to efficiently
handle relatively large problems with proximity operators. For
this reason, it is widely used in the fields of image restoration
and compressed sensing. Typical proximal splitting optimiza-
tion algorithms include the primal-dual splitting method (PDS)
[2]–[6].

The demand for processing of large amount signals such
as volumetric data and high-resolution images is increasing.
With the increase in signal volume, large amounts of data may
have to be processed by computers. For example, in the article
[7], OCT data of size 256× 256× 1673 voxels are processed.

Algorithm 1 Primal-Dual Splitting (PDS) Algorithm

Input: x(0),y(0), γ1 > 0, γ2 > 0, n← 0
Output: x(n)

1: while A stopping criterion is not satisfied do
2: x(n+1) = proxγ1g(x

(n) − γ1(∇f(x(n)) + G>y(n))

3: y(n+1) = proxγ2h∗(y(n) + γ2G(2x(n+1))− x(n))
4: n← n+ 1
5: end while

As the amount of computation increases, so does the time
required for processing, which can take several hours or even
days. In the restoration process of high-resolution and high-
dimensional data, it is essential to use an acceleration method
that is appropriate for the observed signal, thereby reducing
processing time and computational resources.

Therefore, in this work, we propose to accelerate PDS in
order to solve the processing time problem. We address this
issue in two different ways. First, we propose to introduce
an acceleration method into the gradient descent step of PDS
in order to reduce the computation time. As acceleration
methods for PDS, we adopt RMSpropGraves [8] and Adam
[9]. By simulating the OCT image restoration, we confirm
the reduction of computation time and evaluate the restoration
performance. Second, we propose to reduce the computation
time by introducing fixed-point arithmetic. By simulating the
restoration of two-dimensional color images, we confirm the
reduction of computation time and evaluate the restoration
performance.

II. REVIEW OF IMAGE RESTORATION

One existing signal restoration method is the convex opti-
mization method based on proximal splitting. By setting the
image restoration problem as a convex optimization problem,
it can be solved by the iterative algorithm. PDS is one of the
typical proximity splitting optimization algorithms.

A. Primal-Dual Splitting (PDS) Method

Let us consider an optimization problem,

argmin
x∈RN

f(x) + g(x) + h(Gx), (1)

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1528978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



Fig. 1. Restoration model based on sparse representation corresponding to the
degradation model as in (3)

where f, g : RN → R ∪ {∞} and h : RM → R ∪ {∞},
and f is a function that is differentiable and its gradient ∇f
is Lipschitz continuous, g and h are closed convex functions
that are lower semicontinuous and proper, and G ∈ RM×N .
PDS is an algorithm for solving the optimization problem in
(1). One realization of PDS algorithm is shown in Algorithm 1
[2]–[6], where γ1, γ2 > 0 are step size parameters satisfying

γ1

(
β

2
+ γ2(σmax(G>G))

)
< 1, (2)

where σmax(·) denotes the maximum singular value. PDS
avoids inverse operations in the computation process and
can solve problems with a large number of functions and
constraints. These features make PDS suitable for high-
dimensional signal recovery.

B. Signal Restoration Model

Let us consider the degradation model

v = Px + w, (3)

where v ∈ RM is an observed signal, x ∈ RN is an unknown
original signal, P ∈ RM×N is a measurement process, and
w ∈ RM is an additive white Gaussian noise (AWGN).

In the restoration process of high-dimensional signals such
as image and volumetric data, it is important to have a gener-
ative model that can efficiently represent the original data in
order to achieve high quality signal restoration. An example of
a generative model is the use of a dictionary, representing the
original data x as x = Ds, a product of matrix D ∈ RN×L
and coefficient vector s ∈ RL. In this model, we can set matrix
D such that s is almost zero (sparse). The set of column
vectors of D is called a dictionary. Dictionaries include DCT,
DWT and undecimated Haar transform (UDHT) [10]–[12].
By selecting an appropriate dictionary, we can achieve high
quality restoration. The restoration model based on the sparse
representation with dictionary D is represented as in Fig. 1.
The restored signal can be estimated as x̂ = Dŝ [13], [14].

III. PROPOSED ACCELERATION

In this section, we propose two approaches to accelerate
the signal restoration based on PDS. The first approach is the

Algorithm 2 PDS with RMSpropGraves

Input: x(0),y(0),m(0),v(0)

γ1, γ2, ρ1, ε > 0, n← 0
Output: x(n)

1: while A stopping criterion is not satisfied do
2: g(n) = ∇f(x(n))
3: m(n+1) = ρ1m

(n) + (1− ρ1)g(n)

4: v(n+1) = ρ1v
(n) + (1− ρ1)g(n) � g(n)

5: w(n) = (v(n+1) − (m(n+1))◦2 + ε)◦−
1
2 � g(n)

6: x(n+1) = proxγ1g(x
(n) − γ1(w(n) + G>y(n)))

7: y(n+1) = proxγ2h∗(y(n) + γ2G(2x(n+1))− x(n)))
8: n← n+ 1
9: end while

acceleration of the gradient descent step in PDS and the second
one is the implementation with the fixed-point arithmetic.

A. Gradient descent acceleration

Let us propose to introduce an acceleration method into
PDS [15]. Note that the second step

x(n+1) = proxγ1g

(
x(n) − γ1∇f(x(n))− γ1G>y(n)

)
(4)

of the PDS algorithm shown in Algorithm 1 contains the
gradient descent, x(n) − γ1∇f(x(n)). Therefore, we can ac-
celerate the convergence to the optimal solution by adaptively
adjusting the learning rate γ1. In this paper, we introduce
RMSpropGraves, which is a modified algorithm of RMSprop
(see Appendix A), and Adam, which is one of the most
widely used acceleration methods combining RMSProp and
momentum methods (see Appendix B).

Algorithm 2 shows a variant of Algorithm 1 with RMSprop-
Graves, where ρ1 is the decay rate indicating how much of
the gradient information in the (n−1)-th iteration is used, the
superscript ”◦” is the Hadamard power, � is the Hadamard
product, and both of v(0) and m(0) are the zero matrices. ε is a
value to avoid zero division, and should be set to an extremely
small value such as ε = 1.0 × 10−6. ρ1 is an exponential
decay parameter for moment estimation, often set to around
ρ1 = 0.95 in RMSPropGraves.

B. Fixed-point arithmetic

In this study, we also propose to accelerate PDS by fixed-
point arithmetic. In general, there are two types of arithmetic
operations in computers: floating-point arithmetic and fixed-
point arithmetic. While the floating-point number type can
represent a wide range of values from large to small, it requires
higher computation cost than the fixed-point number type.
Fixed-point arithmetic is introduced in consideration of its
impact on the quality of restoration as a means of speeding
up computation.
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Algorithm 3 PDS for (6)

Input: x(0),y
(0)
1 ,y

(0)
2 , γ1 > 0, γ2 > 0, n← 0

Output: x(n), q(n)

1: q(0) = Dx(0)

2: while A stopping criterion is not satisfied do
3: t←Dᵀ(∇f(q(n)) + ∆ᵀ

zy1
(n) + y2

(n))

4: x(n+1) = Gλ‖·‖1(x(n) − γ1t, γ
1
2
1 )

5: q(n+1) = Dx(n+1)

6: u← 2q(n+1) − q(n)

7: y
(n)
1 ← y

(n)
1 + γ2∆zu

8: y
(n)
2 ← y

(n)
2 + γ2u

9: y
(n+1)
1 = y

(n)
1 − γ2Gη‖·‖1(γ−12 y

(n)
1 , γ

− 1
2

2 )

10: y
(n+1)
2 = y

(n)
2 − γ2P[a,b]N (γ−12 y

(n)
2 )

11: n← n+ 1
12: end while

IV. PERFORMANCE EVALUATION

In this section, we first evaluate the performance by the
3-D OCT restoration process to confirm the effectiveness of
the implementation of the acceleration method of the gradient
descent step [7]. Next, to confirm the effectiveness of the
implementation of fixed-point arithmetic, we evaluate the
restoration performance for the Kodak Lossless True Color
Image set by using total variation (TV) regularization [16].

A. Evaluation of gradient descent acceleration

In this section, we apply the proposed acceleration method
to the 3-D OCT data restoration process proposed in [7], and
evaluate the processing time and restoration performance.

1) Problem setting: The OCT observation process is mod-
eled using a coherence function. The coherence function has
a shape similar to a cosine-modulated Gaussian function as
shown in Fig. 2. Let P be the measurement process through
the coherence function.

In the article [7], a synthesis dictionary D ∈ RN×L is
assumed to construct a generative model

u = Ds (5)

for the potential refractive index distribution u [17]. The
problem setting adopted in [7] is formulated as

ŝ = arg min
s∈RL

1

2
‖Pφ(Ds)− v‖22 + λ‖s‖1 + η‖∆zDs‖1,

s.t. Ds ∈ [a, b]N , (6)

where || · ||1 is the `1-norm, || · ||2 is the `2-norm, and λ, η ∈
[0,∞) are the regularization parameters. ∆z indicates a differ-
ence operation in the Z direction and φ : [0,∞)N → (−1, 1)N

denotes the mapping from refractive index to reflectance, and
a and b determine the lower and upper boundary of refractive
indices, respectively.

Algorithm 4 PDS with RMSpropGraves for (6)

Input: x(0),y
(0)
1 ,y

(0)
2 ,m(0),v(0)

γ1 > 0, γ2 > 0, ρ1 > 0, ε > 0, n← 0
Output: x(n), q(n)

1: q(0) = Dx(0)

2: while A stopping criterion is not satisfied do
3: g(n) = ∇f(q(n))
4: m(n+1) = ρ1m

(n) + (1− ρ1)g(n)

5: v(n+1) = ρ1v
(n) + (1− ρ1)(g(n))◦2

6: w(n) = (v(n+1) − (m(n+1))◦2 + ε)◦−
1
2 � g(n)

7: t←Dᵀ(w(n) + ∆ᵀ
zy1

(n) + y2
(n))

8: x(n+1) = Gλ‖·‖1(x(n) − γ1t, γ
1
2
1 )

9: q(n+1) = Dx(n+1)

10: u← 2q(n+1) − q(n)

11: y
(n)
1 ← y

(n)
1 + γ2∆zu

12: y
(n)
2 ← y

(n)
2 + γ2u

13: y
(n+1)
1 = y

(n)
1 − γ2Gη‖·‖1(γ−12 y

(n)
1 , γ

− 1
2

2 )

14: y
(n+1)
2 = y

(n)
2 − γ2P[a,b]N (γ−12 y

(n)
2 )

15: n← n+ 1
16: end while

TABLE I
SPECIFICATIONS OF OCT DATA RESTORATION SIMULATION

Simulation Tools MATLAB R2020b
OS Ubuntu 16.04.7 LTS

CPU Intel Xeon E5-2620
Memory 128GB

In order to apply Algorithm 1 to (6), let

f(x) = F (Dx) =
1

2
‖Pφ1(Dx)− v‖22, (7)

g(x) = λ‖x‖1, (8)
h(Gx) = η‖y1‖1 + ι[a,b]N (y2), (9)

Gx =

[
y1

y2

]
=

[
∆zD
D

]
x, (10)

where φ1(·) is a linear approximation of φ(·), and ι[a,b]N (·)
is the indicator function defined by

ι[a,b]N (y) ,

{
0, y ∈ [a, b]N

∞, y /∈ [a, b]N
. (11)

Algorithm 3 shows the conventional algorithm for solving
(6), where Gλ‖·‖1(x, σ) and P[a,b]N (x) are defined by[

Gλ‖·‖1(x, σ)
]
n
, sgn([x]n) max{|[x]n| − λσ2, 0}, (12)[

P[a,b]N (x)
]
n
, min{max{[x]n, a}, b}, (13)

which are the soft thresholding operation and metric projec-
tion, respectively. Both of the operations are element-wise.

The algorithms accelerated by RMSpropGraves [8] and
Adam [9] are shown in Algorithms 4 and 5, respectively.
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Algorithm 5 PDS with the introduced Adam for (6)

Input: x(0),y
(0)
1 ,y

(0)
2 ,m(0),v(0)

γ1 > 0, γ2 > 0, ρ1 > 0, ρ2 > 0, ε > 0, n← 0
Output: x(n), q(n)

1: q(0) = Dx(0)

2: while A stopping criterion is not satisfied do
3: g(n) = ∇f(q(n))
4: m(n+1) = ρ1m

(n) + (1− ρ1)g(n)

5: v(n+1) = ρ2v
(n) + (1− ρ2)(g(n))◦2

6: m̂(n+1) = m(n)/(1− ρ(n+1)
1 )

7: v̂(n+1) = v(n)/(1− ρ(n+1)
2 )

8: w(n) = (v(n+1) + ε)◦−
1
2 � (m(n+1))

9: t←Dᵀ(w(n) + ∆ᵀ
zy

(n)
1 + y

(n)
2 )

10: x(n+1) = Gλ‖·‖1(x(n) − γ1t, γ
1
2
1 )

11: q(n+1) = Dx(n+1)

12: u← 2q(n+1) − q(n)

13: y
(n)
1 ← y

(n)
1 + γ2∆zu

14: y
(n)
2 ← y

(n)
2 + γ2u

15: y
(n+1)
1 = y

(n)
1 − γ2Gη‖·‖1(γ−12 y

(n)
1 , γ

− 1
2

2 )

16: y
(n+1)
2 = y

(n)
2 − γ2P[a,b]N (γ−12 y

(n)
2 )

17: n← n+ 1
18: end while

Fig. 2. Discrete model of the coherence function. Amplitude: αp = 8,
standard deviation: σp = 8, and angular frequency: ωp = 0.25π.

2) Restoration performance: We simulate the reconstruc-
tion of artificial volumetic data to evaluate the processing
time of the proposed method and compare it with that of
the conventional one. The experimental environment in this
section is shown in Table I. Fig. 3 shows the artificially
generated volumetric data. The result of the restoration when
MSE reaches to 2.00 × 10−5 is shown in Fig. 4, and the
result when MSE reaches to 1.80× 10−5 is shown in Fig. 5.
The variation of MSE with respect to the running time of the
algorithm is shown in Fig. 7. The time required to reach a
certain MSE is summarized in Tables II and III. For this OCT
data restoration, we used γ1 = 1.00 × 10−3, γ2 = 476.1905,
ε = 1.00× 10−8, and UDHT [12] of level 1 as the synthesis
dictionary D.

From Tables II and III, it is confirmed that the restoration
time is reduced when the acceleration method is introduced.
From Figs. 4-6, it is seen that the restoration performance
of the proposed acceleration is almost the same as that of
the original in Algorithm 3. In particular, the processing time

(a) (b)

(c) (d) (e)

Fig. 3. Example of artificial volumetric data. (a) Reflectance distribution: r of
size 64×128×128 voxels. The function Phantom in MATLAB R2020b was
used with the option ’Modified Shepp-Logan’, rescaled between luminance
a = 1.00, b = 1.50, volumized by iterating Y-Z slices in the X direction, and
converted to reflectance. (b) Observation signal v. P is set to the convolution
with the function in Fig. 2. w is set to AWGN with zero mean and standard
deviation 2.0× 10−1. The green and red voxels mean positive and negative
values, respectively, but the brightness of (a) and (b) are increased for better
visibility. Y-Z slice at the center of X (middle). Signal sequence in the
Z direction at the Y-Z center (bottom). (c) Reflectance distribution: r. (d)
Reflectance distribution r. (e) Observation signal v.

TABLE II
COMPARISON OF EXECUTION TIME TO REACH MSE = 2.00× 10−5

Conventional RMSPropGraves Adam
Time [sec] 209.1 55.2 135.2

Speed (times) 1 3.79 1.55

with RMSpropGraves was reduced to about 1/4 for MSE of
2.00× 10−5 and about 1/7 for MSE of 1.80× 10−5.

B. Evaluation of fixed-point arithmetic

In this section, we conduct 2-D color image restoration
simulation based on the TV regularization [16] using PDS to
measure the processing time to reach a certain peak signal-to-
noise ratio (PSNR) and evaluate the restoration performance.
Fig. 8 shows the processing flow of this evaluation. The origi-
nal observation image and PDS parameters are represented in
double precision floating point number type. However, PDS
iterations are performed by casting them into the following
three types of representations.
• Double precision floating point type (hereafter double)
• Single precision floating point type (hereafter single)
• 32-bit signed integer (hereinafter int32)
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(a) (b) (c)

Fig. 4. Reconstruction results at MSE = 2.00 × 10−5. Y-Z slice at the
center of X (top). Signal sequence in the Z direction at the center of Y-Z
(bottom). (a) Conventional method, computation time : 209.1 sec (b) Method
with RMSpropGraves, computation time : 55.2 sec (c) Method with Adam,
computation time : 135.2 sec. However, the brightness is increased for better
readability.

(a) (b) (c)

Fig. 5. Reconstruction results at MSE = 1.80 × 10−5. Y-Z slice at the
center of X (top). Signal sequence in the Z direction at the center of Y-Z
(bottom). (a) Conventional method, computation time : 511.3 sec (b) Method
with RMSpropGraves, computation time : 74.4 sec (c) Method with Adam,
computation time : 769.2 sec

1) Problem setting: Let us consider the following problem
setting.

ŝ = arg min
s∈RL

1

2λ
‖v − Ps‖22 + ι[0,1]N (s) + ‖Ds‖1,2,

s.t. Ds ∈ [0, 1]N . (14)

In order to solve this problem, we can adopt Algorithm 6,
which is based PDS, where we let

f(x) = F (Dx) =
1

2λ
‖v − Px‖22, (15)

g(x) = ‖Dx‖1,2, (16)
h(Gx) = ι[0,1]N (x). (17)

In Algorithm 6, Mγ−1‖·‖1.2(γ−1x) is defined by[
Mγ−1‖·‖1.2(γ−1x)

]
n
, [x]n�max{1−‖[x]n‖−12 , 0}. (18)

2) Restoration performance: We restore 24 images from
Kodak Lossless Ture Color Image set by the TV regularization
[16], and compare and evaluate the recovery accuracy and
processing time of double, single and int32. In this study,
we use GPU for the iterative computation of PDS. The
experimental environment in this section is shown in Table V.

(a) (b) (c)

Fig. 6. Reconstruction results at MSE = 1.80 × 10−5. (a) Original method
(b) RMSpropGraves (c) Adam, where the brightness is increased for better
readability.

Fig. 7. Variation of MSE versus runtime in artificial volumetric data recovery
for the original method (solid blue line), RMSPropGraves (dotted red line),
and Adam (dashed green line).

Fig. 9 shows three examples of original images, which are to
be artificially degraded by pixel loss process with missing ratio
of 50% and AWGN with zero mean and standard deviation of
0.01. The observed images are shown in Fig. 10. Fig. 11 shows
the restored results with a run time of 2.0 seconds, where
Algorithm 9 with λ = 0.01, γ1 = 0.80 and γ2 = 0.1563 is
used, and D denotes the matrix for taking differences between
adjacent pixels in the horizontal and vertical direction. The
average PSNR of 24 images for the execution time is shown
in Fig. 12, and the PSNR for the execution time of 2.0 sec is
shown in Table VI. Figs. 11, 12 and Table VI show that single
shows the best PSNR at 2.0 sec, followed by int32. All of
double, single, and int32 converge to almost the same PSNR.
There is no significant difference in the recovery accuracy
between floating-point and fixed-point types. On the other
hand, there is significant difference in the processing time of
double from the others.

V. CONCLUSIONS

In this study, we proposed to introduce acceleration method
and fixed-point arithmetic implementation to speed up high-
dimensional signal restoration using PDS. For the acceleration
method, we conducted restoration on artificially generated
volumetric data based on the OCT observation model. The
proposed method was able to process the data in a shorter time
than the conventional one. As for the fixed-point arithmetic,
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TABLE III
COMPARISON OF EXECUTION TIME TO REACH MSE = 1.80× 10−5

Conventional RMSPropGraves Adam
Time [sec] 511.3 74.4 769.2

Speed (times) 1 6.87 0.66

TABLE IV
SIMULATION PARAMETERS FOR OCT DATA RESTORATION

Conventional RMSPropGraves Adam
λ 2.62× 10−2 1.68 1.05× 10−1

η 8.19× 10−1 2.56× 10−2 4.10× 10−1

ρ1 - 9.50 0.92
ρ2 - - 0.995

we conducted restoration of 2-D color images based on
the TV regularization. From the experiments, we found that
the fixed-point type can recover the 2-D color image with
almost the same accuracy as the floating-point type. Regarding
to the processing speed, single showed better results than
int32 on GPU. The GPU implementation used in this study
did not show substantial advantages in fixed-point arithmetic
over single-precision floating-point arithmetic. Unlike GPUs,
FPGAs and embedded CPUs can be expected to perform fixed-
point arithmetic in a shorter time than floating-point one. In
the future, we will implement fixed-point arithmetic in FPGAs
and embedded CPUs to achieve faster restoration that is more
flexible and suitable for edge computation.
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APPENDIX A
PMSPROPGRAVES

The algorithm of RMSpropGraves [8] is shown in Algo-
rithm 7. RMSpropGraves stores the sum of squares of the
gradients in each dimension and calculates the square root for
each element to account for the amount of gradient update
in each dimension. In addition, it is corrected to suppress
the influence of the most recently acquired gradient while
exponentially attenuating the previous gradients, so that it is
less strongly influenced by the most recently acquired gradient
information while generally ignoring the gradient information
in the distant past.

APPENDIX B
ADAM

The algorithm of Adam [9] is shown in Algorithm 8. Like
RMSPropGraves, Adam also considers the gradient update for
each dimension. Adam is a combination of the momentum
method and RMSprop. ρ1, ρ2 are an exponential decay pa-
rameter for moment estimation, often set to around ρ1 = 0.9,
ρ2 = 0.99 in Adam.

Fig. 8. The signal flow of our simulation of restoration with TV regularization

Algorithm 6 PDS for (14)

Input: x(0), λ > 0, γ1 > 0, γ2 > 0, n← 0
Output: x(n)

1: y(0) = Dx(0)

2: while A stopping criterion is not satisfied do
3: x(n+1) = P[0,1]N (x(n) − γ1(P ᵀ( 1

λP (x(n)) − v) +

Dᵀy(n)))
4: y(n) = y(n) + γ2(2x(n+1) − x(n))
5: y(n+1) = y(n) −Mγ−1

2 ‖·‖1.2
(γ−12 y(n))

6: n← n+ 1
7: end while

TABLE V
SPECIFICATIONS OF SIMULATIONS FOR 2-D COLOR IMAGE RESTORATION

Simulation Tools MATLAB R2021a
OS Windows10 pro

CPU Intel Core i7-9800X
GPU NVIDIA Quadro GV100

Memory 32GB

(a) kodim01 (b) kodim02 (c) kodim03

Fig. 9. Three examples of original images of size 512× 512 pixels in Kodak
set.

(a) 9.91 dB (b) 11.66 dB (c) 10.95 dB

Fig. 10. Observed images through pixel loss with missing ratio of 50% and
AWGN with zero mean and standard deviation 0.01. The PSNRs are shown.
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(a) 25.39 dB (b) 29.56 dB (c) 28.72 dB

(a) 25.96 dB (b) 30.87 dB (c) 31.61 dB

(a) 25.81 dB (b) 30.79 dB (c) 30.86 dB

Fig. 11. Restored images with of double (top), single (middle) and int32
(bottom) arithmetic. PSNR at time 2.0 sec is also shown.

Fig. 12. The average PSNR for the execution time of 24 images. Solid line:
double, dashed line: single, and dotted line: int32.

Algorithm 7 RMSpropGraves Algorithm

Input: x(0),m(0),v(0), γ > 0, ρ1 > 0, ε > 0, n← 0
Output: x(n)

1: while A stopping criterion is not satisfied do
2: g(n) = ∇f(x(n))
3: m(n+1) = ρ1m

(n) + (1− ρ1)g(n)

4: v(n+1) = ρ1v
(n) + (1− ρ1)(g(n))◦2

5: ∆x(n) = (v(n+1) − (m(n+1))◦2 + ε)◦−
1
2 � g(n)

6: x(n+1) = x(n) − γ∆x(n)

7: n← n+ 1
8: end while

TABLE VI
PSNR FOR THE EXECUTION TIME OF 2.0 SEC

double single int32
kodim01 25.39 25.96 25.81
kodim02 29.56 30.87 30.79
kodim03 28.72 31.61 30.86
kodim04 29.35 31.76 31.48
kodim05 23.35 24.59 24.43
kodim06 22.30 25.59 25.00
kodim07 28.87 30.74 30.42
kodim08 19.27 22.09 21.75
kodim09 26.85 29.83 29.57
kodim10 27.20 29.46 29.18
kodim11 26.96 27.63 27.47
kodim12 22.94 28.29 27.18
kodim13 21.80 23.12 22.92
kodim14 25.31 27.13 26.66
kodim15 25.12 27.92 27.94
kodim16 27.59 29.79 29.44
kodim17 29.12 30.13 30.06
kodim18 26.20 27.02 26.89
kodim19 23.26 25.68 25.39
kodim20 17.55 23.19 21.98
kodim21 25.58 27.12 26.92
kodim22 25.87 28.31 27.92
kodim23 24.52 27.62 28.09
kodim24 23.86 25.44 25.32

Algorithm 8 Adam Algorithm

Input: x(0),m(0),v(0), γ > 0, ρ1 > 0, ρ2 > 0, ε > 0, n← 0
Output: x(n)

1: while A stopping criterion is not satisfied do
2: g(n) = ∇f(x(n))
3: m(n+1) = ρ1m

(n) + (1− ρ1)g(n)

4: v(n+1) = ρ2v
(n) + (1− ρ2)(g(n))◦2

5: m̂(n) = m(n+1)/(1− ρ(n+1)
1 )

6: v̂(n) = v(n+1)/(1− ρ(n+1)
2 )

7: ∆x(n) = (v̂(n) + ε)◦−
1
2 � m̂(n)

8: x(n+1) = x(n) − γ∆x(n)

9: n← n+ 1
10: end while
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