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Abstract—Product quantization (PQ) is a popular technique
for fast image retrieval from a large-scale database. PQ methods
quantize image features into short codes and realize fast retrieval
using lookup tables based on the codes. Although the entropy of
labels (i.e., ground truths for retrieval) is crucial for the retrieval
performance, existing PQ methods focus only on the quantization
errors. This paper proposes a novel PQ method that reduces
the entropy of labels to improve the retrieval performance. We
assume that correct labels for each training sample are known;
then, we train the codes so that we can minimize the label errors
as well as the quantization errors to reduce the entropy of labels.
This enables fast and accurate retrieval when queries (i.e., images
whose labels are unknown) are given.

I. INTRODUCTION

Content-based image retrieval (CBIR) is a fundamental
technique in the multimedia and computer vision fields [1],
[2]. CBIR uses an image rather than a text as a query, and
retrieves visually similar images from the database. The simple
method is to calculate distances between a feature vector of
the query and those of all images in the database and present
the closest one. Time complexity of this method is O(ND),
where N is the number of feature vectors in the database, and
D is their dimensions. Therefore, the large-scale database with
large N and D requires a huge amount of calculation time.

Product quantization (PQ) [3] is a popular technique for fast
image retrieval from a large-scale database. PQ decomposes
each feature vector in the database (∈ RD) into M subvectors
(∈ RD/M ) and applies vector quantization (VQ) [4] to them.
Thus, each feature vector is represented as short codes. By
using a lookup table, the distance between an uncompressed
vector (query) and many compressed vectors in the database
can be computed quickly. As a result, PQ can retrieve ap-
proximate neighbors quickly. However, if subspaces are not
mutually independent, the retrieval performance is degraded.
To overcome this limitation, optimized product quantization
(OPQ) [5], additive quantization (AQ) [6], and composite
quantization (CQ) [7] have been proposed. Specifically, OPQ
applies optimal rotation to feature vectors in advance, and
AQ and CQ represent feature vectors as sums of several
codewords of dimension D. While PQ, OPQ, AQ, and CQ
are unsupervised methods, supervised and semi-supervised
methods [8]–[13] have been proposed. These methods [8]–
[13] can achieve high retrieval performance when labels of
all training data or its part are known. However, there is still
room for improvement in these conventional methods [8]–[13].
Specifically, although the entropy of labels is crucial for the

Fig. 1: Example of clustering by PQ. Black dots denote feature
vectors in a database. The black line is the decision boundary
that separates the dog domain from the cat domain.

　

retrieval performance (whose details are explained in Section
I), these methods focus only on the quantization errors.

Motivated by this, this paper proposes a novel PQ method
to reduce the entropy of labels. Specifically, when retrieving a
query, data are presented randomly from the cluster (Voronoi
region of a codeword) to which the query belongs. For
example, Fig. 1 shows an example of clustering the training
data by PQ. If the query belongs to the upper-left clusters
(entropy is 0), a vector of the correct label is presented. If
it belongs to the lower-left or upper-right cluster (entropy is
larger than 0), a vector of the wrong label may be presented.
Therefore, the retrieval performance would be improved by
reducing the entropy of labels in each cluster. To reduce
the entropy, we assume that correct labels for each training
sample are known, and learn the codebook by using these
labels. Specifically, instead of clustering the training data with
a k-means algorithm [14] as in the PQ, our method clusters
training data to minimize errors of the labels (degrees to
which each cluster includes different labels) as well as the
quantization errors. To the best of our knowledge, this is
the first work to reduce the entropy of labels in PQ. In the
experiment, we confirmed that the proposed method achieves
higher performance than conventional methods.

II. PROPOSED METHOD

The proposed method represents feature vectors as short
codes of length M like the original PQ. In PQ, when a query
is given, images in the cluster to which the query belongs are
presented. Therefore, we consider that the smaller the entropy
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Fig. 2: Overview of our method.

of labels in each cluster, the higher the retrieval accuracy
is. Motivated by this consideration, our method learns the
codebook so that the entropy of the Voronoi regions of each
codeword is smaller than that of PQ.

Figure 2 shows an overview of our method. The difference
between the conventional method and the proposed method
lies in the clustering method used in the learning process. In
the conventional method, codewords are obtained by applying
k-means clustering [14] to the training data to minimize the
quantization error. In our method, codewords are obtained by
using a new clustering method (explained in Section II-C) that
minimizes the error of labels, to reduce the entropy of labels.
Because the retrieval process is the same as in the conventional
method, the retrieval speed does not change.

A. Learning Codebook

This section describes a method for learning codebooks.
First, let {xn|1 ≤ n ≤ N} be the training data that consist
of N training samples. We assume that correct labels for each
training sample xn are known, and {pn|1 ≤ n ≤ N} denotes
one-hot vectors that represent them. More specifically, pn is
a distribution that represents the label of xn. As shown in
Eq. (1), by dividing each training sample into M pieces, the
first subvector x1

n, the second subvector x2
n, ... , the M-th

subvector xM
n are obtained.

xn = (x1, ..., xD/M︸ ︷︷ ︸
x1

n

, ..., xD−D/M+1, ..., xD︸ ︷︷ ︸
xM

n

)T . (1)

We apply the new clustering method (explained in Section
II-C) to {x1

n ∈ RD/M |1 ≤ n ≤ N}. This clustering method
uses pn to reduce the entropy of labels. We obtain K clusters
by this clustering, and use centroids of clusters µk as the
codewords. The same procedure is applied to x2

n, x3
n, ..., xM

n ,
to obtain the codewords in each subspace.

B. Label Error

Here, we explain the label error that the clustering method
used in our PQ method minimizes. The aim of our clustering is
to reduce the entropy of labels in each cluster. Eq. (2) shows
the average value of the entropy, where Vk is the Voronoi
region of the codeword µk.

1

K

N∑
n=1

H(Vk) =

− 1

K

K∑
k=1

C∑
c=1

[∑N
n=1 rnkpn∑N
n=1 rnk

]
c

log2

[∑N
n=1 rnkpn∑N
n=1 rnk

]
c

.

(2)

Here, rnk = 1 for k where ∥xn − µk∥2 is minimized,
and rnk = 0 for the other k. This expression cannot be
differentiated by µk. Therefore, it is difficult to find a solution
of µk that minimize this function.

Therefore, instead of the entropy, the proposed method
minimizes the label error in Eq. (3).

Labelerror(Vk) =

N∑
n=1

∥pn − nk∥2, (3)

nk =

∑
xn∈Vk

pn

|Vk|
, (4)

where nk is an intermediate value representing the label of
the cluster Vk. Here we use the value in Eq. (4) for simplicity.
The label error in Eq. (3) represents the degree to which
the cluster Vk includes different labels. This is because the
larger the mixture of labels in the cluster, the more ambiguous
the average label is. For example, consider the cluster V1,
which contains four images of dogs, and the cluster V2, which
contains two images of dogs and two images of cats. Let us
assume that the label of dogs is (1, 0)T and that for cats is
(0, 1)T. In this case, the average label of V1 is (1, 0)T and
matches each label, so the error is zero. The average label
of V2 is (0.5, 0.5)T, and the mixture of labels leads to an
ambiguous label that is far from each label, and the error is
larger than zero. Because the label error indicates the degree
to which each cluster includes different labels, we can reduce
the entropy by minimizing it.

C. Clustering

In order to reduce the entropy of labels in each cluster, our
method performs clustering in such a way that the label error
is minimized. Specifically, we solve the problem in Eq. (5).
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arg min
ρnk,µk,νk

t

N

N∑
n=1

K∑
k=1

ρmnk∥xn − µk∥2

+
1− t

N

N∑
n=1

K∑
k=1

ρmnk∥pn − νk∥2,

(5)

where ρnk is the probability that the point xn belongs to the
k-th cluster, and

∑K
k=1 ρnk = 1 must be satisfied. µk is the

mean of the k-th cluster and, νk is the mean label of the k-
th cluster. t (0 < t < 1) and m (≥ 1) are hyperparameters.
The first half of Eq. (5) represents the quantization error, the
second half represents the label error, and t is the weight for
the quantization error. Also, m is the degree of ambiguity of
the affiliation probability.

To solve Eq. (5), we alternately optimize ρnk, µk and νk.
When µk and νk are fixed, the minimum solution of ρnk is
shown in Eq. (6) for m > 1.

ρnk =
Ank∑K
k=1 Ank

,

Ank =
(
t∥xn − µk∥2 + (1− t)∥pn − νk∥2

) 1
1−m .

(6)

If m = 1, ρnk = 1 for k where t∥xn−µk∥2+(1−t)∥pn−νk∥2
is minimized, and ρnk = 0 for the other k. When ρnk is fixed,
the minimum solutions of µk and νk are shown in Eqs. (7)
and (8).

µk =

∑N
n=1 ρ

m
nkxn∑N

n=1 ρ
m
nk

, (7)

νk =

∑N
n=1 ρ

m
nkpn∑N

n=1 ρ
m
nk

. (8)

D. Encoding and Retrieval

Finally, we describe encoding and retrieval. The method of
encoding vectors using the learned codebook is the same as in
the original PQ, where vectors are divided into M subvectors
and VQ is applied to them. This quantizes the vectors into
short codes of length M .

Also, the method of retrieval is the same as in PQ. Con-
cretely, the query vector is divided into M subvectors and
the distance between each subvector and each codeword is
calculated to create a lookup table in advance. Using this table,
we calculate the distance between the query and each feature
vectors in a database, and select the closest one to the query.

III. EXPERIMENTAL RESULTS

In this section, we demonstrate that the proposed method
achieves higher retrieval accuracy than conventional methods.
The precision-recall curve was used to evaluate retrieval per-
formance. Precision and recall are defined by Eqs. (9) and (10).
Here, S is the number of correct images in the database, and
we consider a situation where R correct images are obtained
as a result of presenting the top T images as retrieval results.

TABLE I: Recall@100 of the proposed method

t
m 1 1.1 1.2 1.3

0.0001 N/A 0.360 0.358 0.345
0.001 0.356 0.359 0.357 0.345
0.01 0.347 0.352 0.336 0.157
0.1 0.306 0.314 0.211 0.120

TABLE II: Quantization error and entropy

Quantization error Entropy
PQ [3] 1117.46 1.08
OPQ [5] 1531.36 1.61
Ours 1147.95 0.91

Precision =
R

T
, (9)

Recall =
R

S
. (10)

Because there is a trade-off between precision and recall,
the higher the precision-recall curve is in the upper right
corner, the more the retrieval performance increases. We used
6500 images of 10 classes extracted from ImageNet [15] (650
images for each class) as a dataset. From this dataset, 400
images of each class were selected as the training data. Also,
200 images of each class were selected as the database. Finally,
50 images of each class were selected as the query images.
We used intermediate layer outputs (4096 dimension) of the
VGG16 [16] pre-trained on ImageNet as the image features.

Here, we describe parameters of the proposed method. We
trained a codebook (M = 4,K = 8) with some values of t
and m, and measured recall@100 (recall when the top 100
results are presented as retrieval results). Then, t and m that
maximize recall@100 were selected as the parameters of the
proposed method. Table I shows recall@100. From this table,
we use the value of (t,m) = (0.0001, 1.1) as the parameters
of the proposed method.

Table II shows the values of quantization error and entropy
for each quantization method at M = 4,K = 8. This table
shows that the proposed method reduces the entropy compared
with the conventional method. Fig. 3 shows the precision-
recall curve. We can see that the retrieval performance of
both methods increases as well as K, and the difference of
retrieval performance between them decreases. When K = 8,
OPQ is the most accurate if T ≤ 40, and the proposed method
is the most accurate if T ≥ 50. When K = 16, the proposed
method is the most accurate if T ≥ 20, and when K = 32, the
proposed method is the most accurate if T ≥ 10. The retrieval
accuracy when T ≤ 100, is especially important for practical
use. Therefore, when K is large, the proposed method is the
most accurate in practice use.

Figure 4 shows an example of the retrieval results at
M = 4,K = 16. While both PQ and OPQ present images
of wrong labels, the proposed method presents three images
of the correct labels. This is because our method reduces the
entropy of the labels.
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(a) M = 4,K = 8 (b) M = 4,K = 16 (c) M = 4,K = 32

Fig. 3: Precision-Recall curves. We confirmed that the proposed method has the highest retrieval performance.

Fig. 4: Example of the retrieval results at M = 4,K = 16. The query image is shown on the left, and the top three results presented by
each quantization method are shown on the right. The label of the query image is “Labrador Retriever”.

Finally, we have conducted a minimum required experi-
ments to confirm that the retrieval performance is improved
by reducing the entropy. In the future, we will compare
our method with other supervised and semi-supervised PQ
methods [8]–[13].

IV. CONCLUSIONS

We proposed a PQ method to reduce the entropy of labels.
We assume that correct labels for each training sample are
known, and learn the codebook that minimizes the label
error to reduce the entropy of labels. This improves the
discriminative power of images and the retrieval performance.
We have confirmed that the retrieval performance is better than
conventional methods by the experiment using ImageNet.

Finally, we explain the remaining issues of our method. In
our proposed method, clustering is performed in each subspace
during the training of the codebook. However, there is no

guarantee that the solution of codebook that minimizes the
entropy of the clusters in the subspaces coincides with the
solution that minimizes the entropy of the clusters in the
original space. Therefore, there is still room for improvement
in the learning algorithm of the codebook.
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