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Abstract—Action retrieval and detection utilizing pose in-
formation has two difficulties in industrial applications, the
occlusion and variation of human actions. To overcome these
difficulties, we propose a new normalization method to generate
view-invariant pose feature that is corresponding to the key-
points of the original pose information, and design flexible
matching algorithms to perform high-accurate action retrieval.
The proposed methods enable users to easily and flexibly perform
action retrieval with weight constraints on specific body parts
or neglect of invisible body parts for similarity computation.
The experimental results are reported to show that our feature
and flexible matching algorithm outperforms the state-of-the-art
methods in a simulated dataset with annotated multi-view 2D
poses and a real-world video dataset.

I. INTRODUCTION

Human action detection (or recognition) has been studied

for over two decades [1]. As far as we know, the demand

of applications has a diverse range, such as detecting unsafe

actions (e.g. fall down, crouch down) and persons who need

support (e.g. wheel chair users) in public places, the editing

or the analysis on a large amount of video archives based

on human actions. A number of existing methods adopted

traditional machine-learning techniques [2], [3], [4], [5], [6],

and especially in recent years, deep-learning techniques [7],

[8], [9], [10], [11], [12], [13], [14], [15], [16] to handle specific

action detection.

However, to perform robust and generic detection, the deep-

learning methods have to be fine-tuned and well trained to

extract invariant deep features against the change of following

factors: 1) outward appearance (cloth, accessory, belongings,

etc.), 2) shooting environment (light or sunlight condition,

background, etc.), and 3) camera parameters (position, di-

rection, focal length, etc.). Therefore, the training process

inevitably becomes highly time- and cost-consuming to cover

these variations requiring a large amount of training data with

annotations.

To solve this challenging problem, researchers are trying

to abandon these learning-based methods, alternatively adopt

retrieval approaches [17], [18], [19], [20], [21], [22], [23],

[24], [25] using features of optical flow, pattern histogram, etc.

to handle action detection in the manner of query matching.

Especially human pose information extracted from image is

promising feature for human action detection and retrieval

[22], [23] because, this feature overcome the changes of (1)

outward appearance and (2) shooting environment. Further-

more, learning view-invariant embedding space by training

the pair of 3D pose and the projected multi-view 2D pose

to overcome the changes of (3) camera parameters. This

technology was applied to not only view-invariant similar

pose retrieval in images, but also view-invariant similar action

retrieval in videos [24].

However we have to overcome another two difficulties to

achieve high performance in industrial applications. The first

is the variation of poses and their movements regarding the

same action. For example, the pose of sitting on the ground

with/without crossing arms. Both are “sitting on the ground”

but different poses from each other. In this case, conventional

method cannot retrieve one by utilizing the other as the

given query, because the method treat whole body information

equivalently and retrieve the “same pose” as the given query.

To tackle this problem, we apply weight constraints on specific

body parts (i.e., key-points) for similarity computation to

retrieve similar actions.

The second difficulty is occlusion. A part of estimated pose

information is often missed due to the overlapping between hu-

man and human, or human and object in real-world scenarios.

In the conventional techniques, the missing pose key-points

are complemented for full-pose matching based on the time

series information and the information of neighbor key-points.

However the reliability of the complemented information is

limited and insufficient. To achieve high performance in this

situation, partial-pose matching only on visible body parts are

considered as more feasible.

Similarly inspired by the related work, we utilize pose infor-

mation and transform them to view-invariant feature, and adopt

retrieval approach to perform high-accurate human action

retrieval. To overcome the above-mentioned two challenges,

we propose a new normalization method to generate view-

invariant pose feature that is corresponding to the key-point

of the original pose information, and design flexible matching

algorithms for action retrieval. The proposed methods enable

users to easily and flexibly perform action retrieval with weight

constraints on specific body parts or neglect of invisible body

parts for similarity computation.

We implemented the normalized pose feature and the match-

ing algorithm in action retrieval system that can retrieve similar

poses or actions by giving an image or a few second sample

video with specified action (Fig. 1). Evaluation was done by

using annotated multi-viewpoint 2D pose dataset simulated

by motion capture data, and UT-kinect [26] that is widely

used human action video dataset. The experimental results
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Fig. 1. The overview of our method. Key-ideas are view-invariant pose feature, and weighted matching algorithm in which missing key-points are ignored
and characteristic key-points associated with weights are indicating by bigger points.

are reported to show that our approach demonstrates higher

precision and recall than the state-of-the-art methods.

II. RELATED WORKS

A. 2D pose estimation

In recent years, many pose estimation technologies have

been proposed for action recognition [27], [28], [29], human

tracking [30], [31], and human re-identifications [32]. Pose

information is human skeleton structure with 18 key-points,

and invariant feature against outward appearance and shoot

environment.

There are two major approaches, top-down [33], [34] and

bottom-up [35], [36], [37], [38]. The top-down approach

embeds a human detector at the beginning of its data process-

ing unit, and detects each key-point in the detected human

bounding box. However, as in real-world surveillance where

the environment is often crowded and a part of human body

is often occluded, thus human detector tends to fail. Such

a problem has been pointed out by Gkioxari et al. in their

research [39].

To solve this real problem in industrial applications, com-

pared to the top-down method, the alternative approach called

bottom-up method is more robust for human and action

recognition, which constructs human pose structure based

on recognized key-points. Such a bottom-up method first

recognizes human key-points on visible area of human body in

the whole image, then associates those visible key-points into

individual persons and generates human bounding boxes. As a

result, human bounding boxes may not enclose a person’s full

body but the detection itself is more reasonable and flexible.

In our work, we applied bottom-up pose estimation method

to achieve high-accurate action retrieval robust to occlusion.

B. Pose retrieval

The technology of similar image retrieval is proposed to use

2D human pose information for similarity matching between

the data and the given query specified by a user [22], [23],

[25]. To trigger the process of pose retrieval, there are different

ways to specify a query with pose information. For instance,

manually operate the pre-installed pose structure by a user

interface [23], input the Kinect sensor data [23], use the output

of pose estimation engine mentioned above [22], [23], or input

a user-written sketch [25] to trigger a retrieval task.

However, the retrieval performance drastically decreases

because the recognized 2D pose information often conse-

quently changes when camera parameters (position and angle)

or person’s orientation change in different environments. To

overcome this problem, learning view-invariant embedding

space by training the pair of 3D pose and the projected multi

view 2D pose. The matching phase uses a general method

of measuring the Lp norm between embedded features [24].

However, in industrial applications, the retrieval performance

might degrade by the following two difficulties.

The first is the variation of poses regarding the same

action. Conventional features and matching algorithm treat the

whole body information equivalently so that the same action

yet different pose is hard to be retrieved. To overcome this

difficulty, we propose an approach of retrieval with weight

constraints on specific body parts or neglect of invisible body

parts for similarity computation.
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The second is occlusion. A part of estimated pose infor-

mation is often missed due to the overlapping of human-

human and human-object in real world scenarios. Conventional

methods complement the missing key-points based on the

time series information and the information of neighbor key-

points in the preprocessing phase. These methods need 2D

full-pose as input of deep networks. However the reliability of

the complemented information is limited and insufficient. To

achieve high performance in the occlusion situation, partial-

pose matching only on visible body parts are considered as

more feasible.

To solve the above-mentioned two challenging difficulties

in industrial applications, we propose a new normalization

method to generate view-invariant pose feature that is corre-

sponding to the key-point of the original pose information, and

design flexible matching algorithms for action retrieval. The

proposed methods enable users to easily and flexibly perform

action retrieval with weight constraints on specific body parts

or neglect of invisible body parts for similarity computation.

C. Action retrieval

An action retrieval methods by using a time-series pose

feature as a query have been proposed [18], [25]. Most of

researches utilize 3D human pose information obtained by

Kinect sensors, magnetic sensors, and motion capture system.

On the other hand, Sun et al. utilize only 2D pose information

as input and transfer it to view-invariant embedding feature

for view-invariant action retrieval task in videos [24].

In these related works, it is a common way to match frames

between two videos by using Dynamic Time Warping (DTW)

[40] method and to measure the distance between videos by

the sum of distances between corresponding frames.

In our work, we also apply the proposed feature and

matching algorithm to action retrieval task in videos. Frame

matching was performed by DTW as in the existing research,

and the proposed matching algorithm considering weights and

defects was used to calculate the frame-frame distance.

III. PROPOSED METHOD

A. View-invariant feature

As mentioned before, we also utilize pose estimation tech-

nique to extract pose skeleton structure with 18 key-points and

convert it into view-invariant feature. Existing method [24]

also proposed the view-invariant embedding feature obtained

Fig. 2. Poses of sitting on the ground without crossing arms (left) and with
crossing arms (right).

by deep metric learning. With this method, the obtained

features lose the original key-point label (such as shoulders,

elbows, etc.) information.

Assume the situation that retrieving the people who sit on

the ground in real world surveillance, sitting pose would varies

from person to person. For example, one is crossing arms, and

the other is not crossing arms as shown in Fig. 2 (but both

are sitting on the ground). In this case, conventional method

cannot retrieve one by utilizing the other as query, because

the method treat whole body information equivalently and

retrieve the “same pose” as query. However in this case, the

system users would easily come up with the idea to more

weight on the leg shape similarity or ignore the upper body

information. To realize this idea easily, the view-invariant

features should hold the original key-point label. Based on

this policy, our feature is designed as each dimension has a

one-to-one correspondence relationship with each key-point of

the original pose information.

This approach has another advantage in treating missing

key-points. Conventional methods complement the missing

key-point based on the time series information and the sur-

rounding key-point information in preprocessing phase be-

cause the whole pose information is needed as an input of

deep networks. However, the reliability of the complemented

information is limited and insufficient. On the other hand,

our feature extraction method does not need the missing key-

points complementation and the feature holds the “missing”

information in each dimension. So the higher performance

is achieved by matching only with the visible body part

information.

We assume that almost all cameras are installed with the

vertical axis in the screen parallel to the direction of gravity

in the real world. Based on such an assumption, the y-axis

of the pose structure estimated from the image is almost

invariant with respect to the pan angle of the camera. Then,

we can normalize the y coordinate of a pose proportional to

the person’s height (pixel) in the screen, which changes with

the tilt angle and focal length. By this idea, we can generate

a normalized pose feature that is invariant to the change of

camera parameters by the following equation.

fi =
pose yi − core y

p height
,

���
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Fig. 3. Standard human model (left) and pair images of estimated 2d pose
and visualized feature extracted by proposed method (right).
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where pose yi is y component of ith 2D key-point, core y

denotes the neck key-point, and p height is the estimated

height of a person in the screen. If ith key-point is missed, fi
set to −1. p height is also estimated by 2D pose information.

Since 2D pose information frequently has missing key-

points due to occlusion, we propose a robust height estimation

method for key-points missing. To achieve this, we define

a standard human model (Fig. 3) which represent the rela-

tionship between the length of each part (such as limbs and

shoulder length) and height, and estimate the height from each

part by applying to the model. From these calculated heights,

those with larger values are extracted and averaged to be the

estimated height.

Note that the each dimension of the feature has a one-to-

one correspondence with each original pose key-point, and

the feature hold “missing key-point” information in each

dimension.

The pair of 2D pose and visualized proposed feature is

also shown in Fig. 3. In visualization, the x component was

set to a constant value, and the y component is changed

according to the proposed feature value. It can be confirmed

that the proposed feature is invariant with respect to the

clothes, background and orientation of the person.

B. Frame Matching function

For the distance function between features, the following

formula which applies the general L1 distance was used.

L(fa, fb) =
1

n

n
∑

i=1

|fa,i − fb,i|,

where fi is ith dimension of feature vector, and n is the

number of key-points.

When a part of the key-points is missing, matching by using

only the visible key-point information is useful. Therefore,

when the key-point is missing, the following distance function

is used.

L lack(fa, fb) =

∑n

i=1
|fa,i − fb,i| × li
∑n

i=1
li

,

li =

{

1 (fa,i 6= −1 and fb,i 6= −1)

0 (fa,i = −1 or fb,i = −1).

Furthermore, in order to retrieve various actions that differ

from person to person with high accuracy, weight the similarity

of characteristic body parts is effective. The weighted distance

function by this method is given by

L lack weight(fa, fb) =

∑n

i=1
|fa,i − fb,i| ×Wi
∑n

i=1
Wi

,

Wi =

{

wi (fa,i 6= −1 and fb,i 6= −1)

0 (fa,i = −1 or fb,i = −1),

where wi is weight on the ith feature. However, it is difficult

for the user to manually weight each query. To solve this

problem, we define the upright state (Fig. 3 left) as the

reference pose and propose an algorithm that weights the each

key-point based on the difference from the reference pose. wi

is calculated by

wi =
|fq,i − fr,i|

sum lengthr,i

,

where fr is the feature of reference pose, and sum lengthr,i

denotes the sum of length between ith key-point of reference

pose and neck key-point of reference pose (for example,

sum lengthr,Rhand is 0.4, calculated by sum of the length

of Neck-Rshoulder (0.1), Rshoulder-Relbow (0.15), Relbow-

Rhand (0.15)). In this method, each weight is roughly normal-

ized to 1 to 3.

C. Scene matching algorithm

Matching distance between two features was defined as in

the section B. Given the matching distance, we use standard

DTW algorithm [40] to align two action sequences by mini-

mizing the sum of frame matching distances, and sum of frame

distances was used as the distance between two actions.

IV. EXPERIMENT AND EVALUATION

We demonstrate the performance of our feature and match-

ing algorithm through pose retrieval across different camera

views. We further show our method can be directly applied

to downstream tasks, such as action recognition, without any

training.

A. Dataset

For pose retrieval experiments, we validate on an annotated

multi-viewpoint 2D pose dataset simulated by motion capture

data. Additionally, we also evaluate our method for action

retrieval task on UT-Kinect dataset [26].

Motion Capture dataset

We captured several actions using motion capture system

in order to obtain the time-series annotated 3D human pose

dataset. Then these data are converted into 2D pose by

simulating various camera parameters setting to construct a

multi-view and annotated 2D human pose dataset. The dataset

contains 8 actions that are sit on chair, sit on the ground, lie on

the ground, raise right hand, raise left hand, raise both hands,

raise right leg, and raise left leg, acted by 10 people.

The obtained 3D pose information is projected to 2D pose

by setting camera on a hemisphere (radius = 5m) which

centered on the feet of the 3D pose as shown in Fig. 4. Pan

and tilt angle was set from 0° to 350° and from 0° to 40° in

10° increments respectively. Thus, a total of 180 types of 2D

pose generated from one 3D pose.

UT-kinect

This dataset contains 200 trimmed videos for 10 actions.

There are 10 actors and they act each actions two times. Cam-

era parameter is fixed but orientation of actors are changed. We

estimate 2D pose key-point from whole image using NeoPose

[35] and associated with specific person by the provided

person bounding boxes in each frame.
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Fig. 4. 2D projection from 3D pose.

B. Action retrieval by pose

Given motion capture dataset, we query using projected 2D

key-points from one camera view (pan = 0°, tilt = 0° ) and find

the nearest neighbors using normal matching distance L (see

Section III-B) in the feature space from a dataset (except query

pose). In retrieval phase, the dataset is re-organized into three

subsets to examine the efficacy of our approach in different

conditions of a given query, of which the settings include

(a) the data containing the same person as the given query.

(b) the data using the same camera parameters as the given

query (i.e., pan = 0° , tilt = 0°).

(c) all data including the variations of all persons and all

camera parameters.

We iterate each pose of all actions and all persons in the

dataset as a given query. The experimental results are reported

in the average of all queries.

C. Evaluation Procedure

We report the Recall@Precision = 90% for the tasks of

pose retrieval, which is the percentage of correct data retrieved

from the ground-trues in whole dataset. A retrieval result is

considered correct if the action label of the retrieved pose is

the same as the query.

D. Baseline Approaches

We compare our method with full-pose matching method

which utilizes height normalized 2D pose as the feature

[23], and view-invariant deep feature [24] that is trained by

Human3.6M dataset without additional pre-training on our

own dataset. For fair comparison, the same matching distance

L (see Section III-B) is used for the three methods (pose, pr-

vipe, and ours).

E. Without occlusion

The result of recall@precision = 90% is reported in Table I.

Comparing the top-10 images of pose [23] and ours regarding

the setting of sub-set a, and pr-vipe [24] and ours regarding the

setting of sub-set a are shown in Fig. 5 and Fig. 6 respectively.

Regarding the setting a, the top-10 images of ours include

various orientations of images, indicating our method has

better performance than pose due to the view-invariance of the

feature. However the performance number is less than pr-vipe.

On the other hand, our method outperforms both baselines in

setting b, indicating our method is better for robust retrieval

on diverse pose. The result of different people can be seen in

top-10 images of ours.

In addition, our method returns the best results in the setting

c, which comprehensively evaluates the view-invariance and

the robustness to the pose variations.

TABLE I
COMPARISON OF ACTION RETRIEVAL RESULT ON MOTION CAPTURE DATA

WITHOUT ANY OCCLUSION.

Recall (%) @ precision = 90%

Experimental setting A B C

pose [23] 31.5 84.0 19.6
pr-vipe [24] 97.6 49.7 49.0

ours 87.7 91.0 72.4

����
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Fig. 5. Comparing the top-10 images of pose and ours in setting a. The query
action is raise left leg.

F. With occlusion

In order to evaluate the robustness to the key-point missing,

we assume the specific key-point is missed in both query and

index poses. We randomly dropped out the one key-point at

the end of body (right hand, left hand, head, right foot and

left foot) that are frequently missed in real situation. And

we controlled the query and index has different key-point

missing. Missing key-point is placed to the center of the human

bounding box.

In addition to the normal matching distance L, we used

L lack for our features (ours lack) to retrieve ignoring the

missing key-points (see Section III-B). Table II shows the

normal matching function is not suitable for retrieval with

missing key-point regardless of the type of feature. One

way to improve the performance is changing the key-point

complement method, however the reliability of the information

is limited and insufficient. On the other hand, ours lack

outperform all the other method and only a slight decrease

in recall compared to the evaluation without any key-point

missing. This result indicate the matching only with visible

key-point information is better way for retrieval poses with

occlusion.

G. Action retrieval by movie

As a dataset, UT-Kinect [26] was used. As a baseline,

we also selected two method, pose [23] and pr-vipe [24].

Matching distance was defined as the L (see Section III-B)

between two features. L lack and L lack weight are also
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Fig. 6. Comparing the top-10 images of pr-vipe and ours in setting B. The
query action is sit on the ground.

TABLE II
COMPARISON OF ACTION RETRIEVAL RESULT ON MOTION CAPTURE DATA

WITH OCCLUSION.

Recall (%) @ precision = 90%

Experimental setting A B C

pose [23] 17.8 63.2 11.8
pr-vipe [24] 43.0 14.7 9.7

ours 18.4 12.9 5.8
ours lack 78.2 77.8 48.6

used for our feature to evaluate the retrieval performance

with ignoring missing key-point (ours lack) and with weight-

ing characteristic key-points (ours lack weight) respectively.

Given the matching distance, we use standard dynamic time

warping (DTW) algorithm [40] to align two action sequences

by minimizing the sum of frame matching distances, and sum

of frame distances was used as the distance between two

actions.

We reported the average precision and recall @ top-k with

k = 1, 5, 10 on action retrieval in Table III and Table IV

respectively. This shows that our proposed feature itself is

less accurate by pr-vipe [24] method, but is able to detect

similar action to query with higher precision and recall than

the baseline methods with our flexible matching algorithm.

Furthermore, since ours weight lack demonstrated the highest

performance, retrieval with weighting characteristic key-points

based on the proposed algorithm was effective.

TABLE III
COMPARISON OF ACTION RETRIEVAL PRECISION ON UT-KINECT DATASET

[26].

Average precision (%) @ top-k

k 1 5 10

pose [23] 86.2 67.6 54.0
pr-vipe [24] 91.9 78.9 67.3

ours 91.7 75.2 63.4
ours lack 95.5 85.3 78.3

ours lack weight 96.0 86.3 79.6

V. CONCLUSION

In this paper, we introduced our action retrieval technol-

ogy realized by new view-invariant pose feature and flexible

matching algorithm. The feature is calculated by 2D pose

information, and has a one-to-one correspondence with each

key-point of the original pose information. Matching algo-

rithms can easily and flexibly ignore the missing key-points

TABLE IV
COMPARISON OF ACTION RETRIEVAL RECALL ON UT-KINECT DATASET

[26].

Average recall (%) @ top-k

k 1 5 10

pose [23] 3.7 15.4 24.9
pr-vipe [24] 4.2 18.8 32.2

ours 4.2 17.7 30.0
ours lack 4.6 20.7 38.3

ours lack weight 4.6 21.0 39.0

or weight characteristic key-points. Our method outperforms

the state-of-the-art methods for pose retrieval tasks on an

annotated 2D pose dataset and action retrieval task on a real-

world video dataset.
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[1] Tomi Räty. Survey on contemporary remote surveillance systems for
public safety. IEEE Trans. Syst. Man Cybern. Part C, 40(5):493–515,
2010.

[2] Saad Ali and Mubarak Shah. Human action recognition in videos using
kinematic features and multiple instance learning. IEEE Trans. Pattern

Anal. Mach. Intell., 32(2):288–303, 2010.

[3] Sreemanananth Sadanand and Jason J. Corso. Action bank: A high-
level representation of activity in video. In 2012 IEEE Conference on

Computer Vision and Pattern Recognition, Providence, RI, USA, June

16-21, 2012, pages 1234–1241. IEEE Computer Society, 2012.

[4] Yigithan Dedeoglu, B. Ugur Töreyin, Ugur Güdükbay, and A. Enis
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