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Abstract—In this paper, we present a reinforcement learning
(RL)-based coding method to recursively divide video frames
into several groups displaying similar temporal characteristics
and improve rate-distortion (R-D) performance. Although the
previous works have attempted to challenge the problem with
analytical models, it was difficult to address complicated de-
pendencies of video frames. In the proposed method, we cast
the recursive problem as a sequence of a state-action for an
agent to conduct an RL, by partitioning the current group to the
half. The optimal solution is obtained by maximizing a reward
function of the RL policy. Experimental results demonstrate that
the proposed method can adapt to a video sequence whereas
a fixed coding scheme cannot efficiently achieve optimal coding
performance in dynamic video sequences.

I. INTRODUCTION

Video contents are everywhere in our daily life. The video
coding technology with compression capabilities has been
developed persistently, and the latest versatile video coding
(VVC) yields coding efficiency about two times better than
high efficiency video coding (HEVC) [1]. However, the growth
rate of video consumptions becomes higher than ever before.
Accordingly, to make a breakthrough for higher coding effi-
ciency, many researchers are paying attention to the study of
applying machine learning to video coding [2]–[7], [21].

Video coding efficiency can be significantly enhanced by
exploiting the enormous temporal correlation which is the
major part of the video compression task. There have been
several studies to reduce temporal redundancy in the direction
of improving more accurate representation of a motion vector
and a reference block using deep learning [2]–[4]. In [2],
[3], Lee et al. proposed a coding scheme for generating a
virtual reference frame (VRF) from a previous video frame
using convolutional neural network (CNN) in order to address
irregular and dynamically changing motions and using the
VRF to predict the current sample. In [4], super-resolution
deep learning technology is applied as an upsampling method
of a reference frame for a sub-pixel motion prediction. In [7],
a prediction block generated by linearly combining two block
signals in bidirectional prediction is further refined to increase
the accuracy. CNN is trained to approximate the reference
block to the original block.

Although many recent studies developed sophisticated inter-
prediction methods, they have overlooked a temporal depen-
dency between the current frame and the reference frame. In
fact, since a coding of a preceding frame can significantly

Fig. 1. Sample videos for which the proposed method conducts to divide video
frames into several divisions.

affect coding performance of a subsequent frames, the coding
dependency needs to be carefully addressed. Previous studies
have realized the intriguing problem and attempted to solve the
temporal dependency to improve coding efficiency [9]–[11].
In [9], temporally dependent rate-distortion optimizations was
conducted by calculating the distortion propagated from the
reference frames. In [11], [12], graph theoretical approaches
were employed. They could exploit more efficient predictions
to use more bits for key frames, when a video included
dynamic scene changes.

In this paper, we introduce a reinforcement learning (RL) to
recursively divide video intervals into several groups to include
temporally consistent information and improve rate-distortion
(R-D) performance. The previous works have attempted to
challenge the problem with analytical models [9]–[11] or apply
temporal action proposals to perform temporal localization
and segmentation [8]. However, it was difficult to address
complicated dependencies of videos displaying dynamic spa-
tial and temporal characteristics. In the proposed method, we
make a partition of a video interval as a sequence of a state-
action for an agent to conduct an RL. Fig. 1 exhibits our
motivation. When encoding a homogeneous video sequence as
in Fig. 1, a larger group-of-picture (GOP) would be efficient
as the reference frames share much information. In contrast, a
smaller one can be exploited to handle the different properties
after a scene change, by partitioning the current group to the
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half. The optimal solution is obtained by maximizing a reward
function of the RL policy. In our implementation, we use an
adaptive GOP to encode the interval which is a power of two
as shown in Fig. 1. In this manner, the proposed method can
adapt to a video sequence whereas a fixed coding scheme in
the previous works cannot efficiently achieve optimal coding
performance in dynamic video sequences.

The rest of the paper is organized as follows. In Sec. II, we
review the related works and the RL. We describe the proposed
method in Sec. III. Experimental results are presented in Sec.
IV. The conclusion is remarked in Sec. V.

II. BACKGROUND

A. Reinforcement Learning

An RL system is defined as a tuple of (s, a, r, t), in which
s is a state, a is an action, r is a reward, and t is a transition
to the next state s′. The agent a trains a policy to take an
action to maximize r. At every moment t, the policy π(st)
determines an action at to move to the next state from st
to receive a immediate reward of rt+1 to maximize the total
reward. The agent keeps producing a sequence of a state-
action and a reward to interact to an environment. The process
is accomplished by maximizing Q-function as the sum of
rewards. In a policy π, we define Qπ(s, a) [13] as

Qπ(s, a) = Eπ

[
I−1∑
i=0

rt+1+i|st = s, at = a

]
, (1)

where I is the total iterations.
Then, we obtain the optimal policy π∗, by obtaining

Qπ∗(s, a) = maxπ Qπ(s, a) among the plausible states and
actions. The best action a∗t in the current time is obtained
through the action-replay process [14] as follows:

a∗t = argmax
a

Qπ∗(st, a). (2)

B. Temporal Prediction Structure

A temporal prediction structure (TPS) is used for maximiz-
ing coding performance while yielding useful features such as
temporal scalability [15]. In TPS, a video frame is involved to
a group-of-picture (GOP) to determine a reference frame for
a current frame. In the group, intra- or inter-coded frames can
be the key frames, and non-key frames in the middle of the
two key frames are coded with the key frames as references.
The coding order needs to be chosen in a way that reference
frames are coded before used for inter-prediction.

The key frames are more critical to coding efficiency
because the reconstruction quality will affect the coding of the
other frames. Thus, the key frames are coded with the highest
fidelity using the lowest value of a quantization parameter (QP)
to assign more bits whereas the non-key frames are coded with
a larger QP. The interval between two consecutive key frames
(or the size of a GOP) is not necessarily uniform for coding
efficiency. For instance, in one hand, a large group size is more
beneficial to encode static video scenes because there are slight
motion changes between two key frames. In the other hand,

a small group size is chosen for dynamic motions. The GOP
sizes can be changed based upon the temporal characteristics
of a video sequence.

III. PROPOSED METHOD

A. Policy representation

We choose important video intervals to include rich motion
information to affect a coding of a subsequent frame, and
organize the intervals in an order to improve coding efficiency.

We present an adaptive temporal segmentation method of
video intervals using an RL algorithm. The goal is to maximize
coding efficiency by choosing a series of the intervals and to
construct an optimal HPS for coding a video. Suppose that
there are L frames, and the objective is to determine the dyadic
divisions of the video frames V = {v0, . . . , vL−1} into several
different interval sizes of GOPs in an HPS.

Let a Q-function Qπ(vi, vj ; a) denote the expected costs
to encode the frames from vi+1 to vi+j−1, and J(v) is the
Lagrangian cost to encode a frame v, defined as

J(v) = D + λR, (3)

where D is the distortion, R is the bits, and λ is the Lagrangian
multiplier. In Eq.2, the best action was given by maximizing
the accumulated rewards in each episode. However, as J is
the cost, the optimal solution of a Q-function to encode V is
given as,

min
a

{Qπ(i,
j

2
; a) +Qπ(i+

j

2
, j; a) + Ja(i+

j

2
)}, (4)

where we replace max operation due to the cost function. This
procedure can be periodically performed to encode a whole
video sequence.

B. Deep Q-Learning

The optimal action a∗ is obtained by conducting an opti-
mization as follows:

a∗ = argmin
a

Qπ∗(i, j; a), (5)

where we can recursively divide the intervals using Eq.4, and
the near-optimal policy can be obtained by combining the
local policies in each interval. However, the computation is
too complicated.

Therefore, we adopt a deep Q-learning [16] to learn the
policy and obtain a sub-optimal solution. DQN employees a
two-step learning procedure with two different deep neural
networks. The main network predicts the current Q-value,
and the target network computes the subsequent value for the
next state and action. In Q-learning, once an agent starts with
an initial Q-value, the value is iteratively enhanced until an
episode is over as follows:

q = Qπθ
−Qπθ

′ , (6)

where Qπθ
and Qπθ

′ are the Q-values of the main and target
networks, respectively. Although the two networks have the
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Fig. 2. The proposed network architecture using concatenated frames in a
group.

same architectures, the parameter of the target network is one-
step ahead of the main network. The Q-network is updated
with θ by minimizing q. In our implementation, we have
imposed the Q-function to consider only the present cost to
make a greedy decision. Furthermore, we use a replay memory
[17] for complexity reduction.

C. Implementation

Fig. 2 displays a DQN motivated by [16]. We input all
the frames between two key frames vi and vj in a group to
determine if the group needs to be divided or not. The DQN
extracts video features about an action and a state. Specifically,
the input video frames are all concatenated and inputted to
the network. The features are extracted from the convolution
layers and two fully connected layers to calculate an action.
For example, if b = 1, the current group keeps the same.
Otherwise, the group is septated into two smaller ones. In the
implementation, the size of the interval is a power of two as
a GOP is set to 8, 16, or 32.

We implement the proposed network using Tensorflow and
train the network with the Adam optimizer [18] to update the
network parameters for 1000 episodes. We set ϵ = 0.01. for
an ϵ-greedy policy.

IV. EXPERIMENTAL RESULTS

A. Experimental Setting

We obtain high definition videos from YouTube and divide
the video samples into training and testing sets. We resize
the training videos to 416 × 240 and try to include more
diversities regarding temporal dynamics. For this, we combine
several videos to display scene changes as shown in Fig.
3. The number of training videos is around 9,000 videos.
Furthermore, we also categorize the test video samples into
two sets that are static videos with no scene change and
dynamic videos. This categorization is used to evaluate how
the proposed method perform differently with the character-
istics. We also used JCT-VC test sequences for testing. The
experiments are performed with a 3.60 GHz Intel CPU, 8.0
GB RAM, and NVIDIA TITAN X GPU.

Fig. 3. Examples of YouTube training videos with static and dynamic video
groups.

B. Experimental Results

We evaluate the coding performance of the proposed method
in comparison to an HEVC reference software, HM version
16.9 [19]. The reference software uses a fixed size of GOP
16. Furthermore, we compare the efficiency of the proposed
method with the coding performance of fixed GOPs at sizes of
8 and 32, referred to as “fixed GOP 8” and “fixed GOP 32”,
respectively. The Bjontegaard-Delta rate (BD-rate) reductions
are used for calculating the coding performance. We calculate
the bits and PSNR for luma components.

TABLE I
BD-RATE (IN THE UNIT OF %) REDUCTION IN Y COMPONENT OF THE

PROPOSED METHOD IN YOUTUBE TEST VIDEOS USING THE FIXED GOP 16
AS THE ANCHOR. FOR COMPARISONS, A FIXED GOP OF 8 AND FIXED
GOP OF 32 ARE TESTED BY CHANGING THE SIZE OF THE GOP IN THE

HM SOFTWARE.

Category Sequence Fixed GOP Proposed method8 32

Static

1 −2.1% 0.4% 0.4%
2 0.4% −7.6% −7.6%
3 0.3% −1.1% −1.1%
4 −2.8% 0.2% −2.9%
5 14.6% −0.6% −0.6%
6 1.6% −1.9% −1.1%
7 0.5% −2.6% −2.7%
8 −3.5% 0.3% −3.5%
9 −5.7% 6.3% −5.7%

10 6.6% 0.6% 0.0%
11 1.9% −6.4% −6.4%
12 0.1% −3.2% −3.2%

Average BD-rate 1.0% −1.3% −2.9%

Dynamic

13 −10.8% −0.1% −3.7%
14 1.5% −1.5% −0.5%
15 −1.0% −1.9% −2.2%
16 1.6% 11.4% −3.0%
17 0.7% 4.6% 5.0%
18 −8.1% 5.0% −8.1%
19 3.5% −4.6% −4.6%
20 2.0% 18.0% −4.1%
21 2.6% −0.9% 2.6%
22 0.4% 0.3% 0.0%
23 0.6% 15.8% −0.3%
24 −0.1% 5.2% 5.2%

Average BD-rate −0.6% 4.3% −1.1%
Total average BD-rate 0.2% 1.5% −2.0%
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Table I shows the enhanced R-D performance of the pro-
posed method in YouTube videos. The proposed method yields
better coding gains of more than 2.0% in BD-rate reduc-
tions on average. In comparisons, the fixed GOP 8 yielded
slightly degraded coding performance of approximately 0.2%.
The fixed GOP 32 even shows a substantial coding loss
approximately 1.5 %. The proposed method provides different
coding performance with various test video sequences. It is
observed that the fixed GOP 32 provides coding performance
approximately -1.3% in static videos whereas the coding
gains are significantly degraded in dynamic videos. The fixed
GOP 32 displays the opposite results. However, the proposed
method provides improved coding performance both in the
static and dynamic videos approximately -2.9% and -1.1%,
respectively. It implies that the proposed method adapts to
test video sequences, successfully and achieves better coding
performance. We also provide the results in JCT-VC test
sequences as shown in Table II. The proposed method provides
improved coding performance of more than 1.9% in BD-rate
reductions on average.

TABLE II
BD-RATE (IN THE UNIT OF %) REDUCTION IN Y COMPONENT OF THE

PROPOSED TECHNIQUE IN JCT-VC SEQUENCES USING THE FIXED GOP 16
AS THE ANCHOR. FOR COMPARISONS, A FIXED GOP OF 8 AND FIXED
GOP OF 32 ARE TESTED BY CHANGING THE SIZE OF THE GOP IN THE

HM SOFTWARE.

Class Fixed GOP Proposed method8 32
A1 0.8% −1.1% −1.1%
A2 1.3% −1.1% −1.1%
B 1.6% −0.7% −1.0%
C 2.8% −2.6% −2.6%
D 2.7% −1.5% −1.5%
E 1.9% −4.4% −4.4%
Average 1.9% −1.8% −1.9%

V. CONCLUSION

In this paper, a reinforcement learning (RL)-based coding
method was proposed to divide video frames into several
groups displaying similar temporal characteristics for coding
efficiency. In the proposed method, the recursive problem has
been solved with a sequence of a state-action for an agent. The
decision make a partitioning of the current group to smaller
groups. It was demonstrated with experimental results that the
proposed method achieve improved coding performance.
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