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Abstract— Facial landmarks are important for various facial 
analysis tasks, including face recognition, age estimation, 
expression identification, medical image processing, and forensics. 
Influenced by the popularity of self-training in recent years, we 
propose a semi-supervised based human face landmark detection 
algorithm. First, we train a model with labeled data. Then, a huge 
amount of unlabeled data is fed into the model to generate pseudo 
labels. In order to filter out the pseudo labels with higher 
credibility, we propose a probabilistic model and determine how 
close the output feature distribution corresponding to the pseudo 
labels to the Gaussian distribution is. Then, the data with the 
pseudo labels are adopted to improve the performance. Moreover, 
different thresholds are applied for screening. Experiments show 
that, with the proposed semi-supervised based algorithm, the 
accuracy of landmark extraction can be improved.  

I. INTRODUCTION 

Facial landmark detection is critical in many facial analysis 
tasks. There are many existing facial landmark detection 
algorithms, including conventional and learning-based ones. 
However, due to the limited amount of labeled data, it is still 
hard to take all the conditions into account. Thus, in this paper, 
a semi-supervised algorithm is proposed. We acquire unlabeled 
images from the CelebA Dataset [1] and train the network with 
the following four main steps: (1) train a teacher model on 
labeled images, (2) use the teacher model to generate pseudo 
labels on unlabeled images, (3) choose the pseudo-labeled 
images with higher credibility, and (4) train a student model on 
both labeled images and pseudo labeled images. Compared to 
other semi-supervised learning algorithms, the main 
contributions of the proposed method are that the confidence 
sifting mechanism is applied to sift the pseudo-labeled data 
with less confidence and that the augmentation sifting 
mechanism is applied to remove the data with less robustness.   

Experiments show that, on the 300W-common test dataset 
[2], the proposed model can get a 5.5% lower error rate 
compared to the teacher model. The proposed model can 
improve the accuracy of facial landmark extraction.  

II. RELATED WORKS 

A. Summary of Facial Landmark Detection Methods 

There are many existing facial landmark detection 
algorithms, including the active shape model using principal 
component analysis (PCA) [3] and the model of assembling 
regression trees [4]. The heatmap regression method, which 
regresses a heatmap generated from landmark coordinates, is 
widely used in facial landmark detection [5-8]. The 2D 

heatmap is generated by plotting a Gaussian distribution at the 
landmark location at each channel. Then, the predicted 
heatmap is used to infer the landmark coordinates. By heatmap 
regression, the accuracy of facial landmark extraction in the 2D 
space can be significantly improved.         

Several CNN-based heatmap regression models were 
proposed in recent years. A joint bottom-up and top-down 
stacked hourglass network was proposed in [5]. Tang et al. 
proposed a quantized densely connected U-net [6] with fewer 
parameters than the stacked hourglass network. Valle et al. [7] 
combined the CNN models to assemble regression trees in a 
coarse-to-fine fashion. Li et al. [8] focused on the structure of 
the face by using the cascaded graph convolutional network. 
Wu et al. [9]. proposed a two-stage stacked hourglass model to 
predict the facial boundary map with boundary information.  

The loss function assignment is also important for facial 
landmark detection. Based on different regression methods, it 
is suitable to regress with different loss functions. The adaptive 
wing loss [10], a two-stage loss function, was proposed in 2019. 
It is to emphasize the gradient of loss when the error is small. 
With the natural log function, the loss function can magnify the 
gradient of loss with small error. It is defined as follows 
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where 𝑦  and yො  are the values of the ground truth and the 
predicted value, respectively,  
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and  𝜔 ൌ 14, 𝜃 ൌ 0.5, 𝜖 ൌ 1, 𝛼 ൌ 2.1.                 
 

B. Semi-supervision 

In recent years, the technique of semi-supervised learning 
has been widely adopted in classification problems [11]. 
Typically, when applying semi-supervised learning, first a 
teacher model is trained on labeled data. Then, a huge amount 
of unlabeled data is acquired and the teacher model is used to 
generate pseudo labels on these data. Then, the student model 
is trained on the combination of labeled and pseudo labeled 
data. With the use of semi-supervised learning, a very accurate 
model can be achieved even if the number of labeled images is 
limited initially.    
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Fig. 1.  Pipeline of the training phase for the proposed semi-supervised 

algorithm. In Step 3, we remove images with unconfident pseudo labels.  

III. PROPOSED LANDMARK DETECTION SYSTEM  

The proposed facial landmark detection system has three 
stages. The first one is preprocessing. In this stage, the initial 
face image is cropped according to the ground truth bounding 
box. Then, data augmentation is performed. The second stage 
is to predict the heatmap. The third stage is post-processing. In 
this stage, the maximum value of the predicted heatmap at each 
landmark channel is applied to get the final landmark 
coordinates. 

The proposed model is the improvement of the stacked 
hourglass model [10] by using semi-supervised learning with 
the confidence and the distance sifting mechanisms. The model 
is a fully convolutional network and can regress on the ground 
truth heatmap directly. 

IV. PROPOSED SEMI-SUPERVISED BASED APPROACH 

The proposed semi-supervised learning approach has the 
following four main steps: (1) Train a teacher model with 
labeled images. We use the images in the 300W [4] or WFLW 
[9] dataset as our labeled data. (2) Generate pseudo labels on 
unlabeled images with the teacher model. We choose unlabeled 
data from CelebA [3] about 3 to 4 times the labeled data. (3) 
Choose the data with the pseudo label that has higher 
credibility. (4) Train a student model on the combination of 
labeled images and pseudo labeled images. 

In Step 3, choose the pseudo labeled image with higher 
credibility is a very important step, which can decide whether 
the prediction result is precise or not. Here we proposed two 
mechanisms to sift pseudo labeled data.  

 

A. Confidence Sifting Mechanism   

The teacher model is trained to predict the heatmap 
consisting of a 2D Gaussian distribution with the same variance 
along x and y axes centering on (xk, yk), where (xk, yk) is the 
ground truth of the kth landmark. If the predicted heatmap patch 
around the prediction point is closer to the 2D Gaussian 
distribution, then the prediction result has higher confidence.   

 

Fig. 2  Pipeline of the proposed facial landmark detection system. The model 
predicts the output heatmaps with size ሺ𝐶 ൅ 1ሻ ൈ 𝐻 ൈ 𝑊 , where 𝐶  is 
the number of output landmark channels and H and W are the height and 
width of the output heatmap, respectively. 

 
Fig. 3  Facial landmark detection results using the pseudo labeled data with 

different thresholds for confidence value. One can see that a higher 
threshold for confidence can achieve a better result.  

 
We apply the Pearson chi-square test to evaluate the 

confidence:  
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Ei is a Gaussian heatmap, which is the template representing 
the ideal response, i is pixel index, A is the input image, W is 
the set of model parameters; P is the predicted output, and Φi 
is the cropped patch (with the same size of the Gaussian 
template) centered on P.  

We use (2) to calculate the confidence of each prediction and 
remove the data with very low confidence from the pseudo 
labeled data.  

In Fig. 3, we can find that the prediction result has higher 
accuracy when applying the pseudo labeled with higher 
confidence. 

 

B. Augmentation Sifting Mechanism 

According [12], if a predictor is valid, then the prediction 
result is robust to data augmentation. Hence, we propose a 
method based on this idea to verify the landmark coordinates: 
(1) Perform data augmentation on the input image. Data 
augmentation includes rotation (േ5°ሻ, rescaling (േ5%ሻ, and 
flipping (100%). (2) Predict landmark coordinates for both 
images. (3) Calculate the distance function of predicted 
landmarks of the two images.  

(2) 

(3) 
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Fig. 4  The pipeline to verify with data augmentation. 

                      
The distance function is as follows: 
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where 𝑝௜ and 𝑝̂௜ are the ith predicted landmark coordinates for 
the original and augmented images, respectively, M is the 
number of landmarks, and 𝑑 is the normalization factor. Here, 
we use the inter-pupil distance (the distance of eye centers) as 
the normalization factor. 

We use (4) to calculate the distance of each pseudo labeled 
image and remove the one with too large distance. The 
flowchart of the proposed augmentation sifting mechanism is 
plotted in Fig. 4.     

After these two sifting mechanisms, we get pseudo labels 
with higher confidence. Then, we train the student model with 
the combination of labeled and pseudo labeled data. 

V. EXPERIMENTS 

A. Labeled and Unlabeled Datasets and Metrics 
We train the proposed approach with 300W dataset [2], 

which consists of the images with large variations of identity, 
expression, pose, occlusion, and illumination. A method that 
can achieve high accuracy on this dataset will always perform 
better in realistic data.  The 300W dataset consists of a training 
subset (3148 images), a common test subset (554 images), 
and a challenging test subset (135 images). The images in 
these three datasets are not overlapped.   

The unlabeled images are from the CelebA dataset [1]. The 
CelebA dataset contains 202,599 face pictures with 10,177 
celebrity identities. We take 20,260 images from it.  

The normalized mean error (NME) is commonly used to 
evaluate the localization quality. It is defined as:  

                 𝑁𝑀𝐸൫𝑃, 𝑃෠൯ ൌ
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where P and 𝑃෠ are the ground truth and the predicted landmark 
coordinates for each image, respectively. 𝑝௜ and 𝑝̂௜ are the ith 
landmark coordinates in the ground truth and in the prediction 
result, respectively, M is the number of landmarks, d is the 
normalization factor. We use the inter-pupil distance (the 
distance of eye centers) as the normalization factor. 

 
Fig. 5  Visualization of the landmark detection results of the TCDCN [17] 

and the proposed algorithm on the 300W test dataset.  

 
The failure rate (RF) is also a metric to evaluation the 

landmark detection result. If the NME is larger than a threshold, 
then it is considered a failed prediction. Here, we use 10% as 
the threshold.  

 
B. Implementation Details 

We use the bounding boxes provided by the dataset to crop 
the input images. The input size of the proposed model is 
256 ൈ 256 ൈ 3  and the output size is 64 ൈ 64 . During the 
training phase, we use RMSProp with an initial learning rate of 
10െ4 and momentum = 0. We use the adaptive wing loss in (1). 
We train the teacher model for 220 epochs and the learning rate 
is reduced to 10െ5  and 10െ6  after 80 and 160 epochs, 
respectively. The student model is trained for 80 epochs and 
the learning rate is reduced to 10െ5 and 10െ6 after 30 and 50 
epochs, respectively. 
 
C. Evaluation 

From Table I, one can see that the best performance can be 
achieved if 10,600 pseudo labeled images are adopted (i.e., 
52.32% of the pseudo labeled images are chosen). In Tables II 
and III, the performance of the proposed algorithm and some 
other landmark detection algorithms are compared. The results 
show that, with the proposed semi-supervised learning 
algorithm with confidence and augmentation sifting 
mechanisms, a more accurate facial landmark detection result 
can be achieved. Some visual results of facial landmark 
detection are shown in Fig. 5.  
 
D. Ablation Study 

The ablation study of the two adopted sifting mechanisms is 
shown in Table IV. With confidence and augmentation sifting 
mechanisms in (2) and (4), the result is the best on the 300W 
Common and Full test dataset. However, for the 300W 
Challenge test dataset, the best result is achieved when the 
augmentation sifting algorithm is adopted only. It is worth 
mentioning that, without confidence and augmentation sifting 
mechanisms, the result is much worse. Hence, the confidence 
and augmentation sifting mechanisms are helpful for 
improving the performance of landmark detection.    
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TABLE I: Comparison of adding different amounts of pseudo labeled data. The 
number in brackets represents the number of adopted data. The evaluation 
metric is the NME (%) here.  

Method Common Challenge All
(i) Labeled data (3148) 4.35 8.72 5.21

(ii) Labeled data (3148) + pseudo 
labeled data (7200) 

4.20 8.54 5.05 

(iii) Labeled data (3148) + pseudo 
labeled data (10600) 

4.11 8.60 4.99 

(iv) Labeled data (3148) + pseudo 
labeled data (14000) 

4.29 8.7 5.15 

 
TABLE II: Comparison with other classic methods. The evaluation metric is 

the NME (%) here (with inter-pupil normalization). 
Method Common Challenge All 
CFAN 5.50 16.78 7.69 
SDM 5.57 15.40 7.52 

3DDFA [14] 6.15 10.59. 7.01 
LBF [15] 4.95 11.98 6.32 
CFSS [16] 4.73 9.98 5.76 

TCDCN [17] 4.80 8.60 5.54 
RCN [18] 4.67 8.44 5.41 
Proposed 4.11 8.6 4.99 

 
TABLE III: Evaluation on the test subsets of the 300W dataset. The fail rate 

(FR) is adopted for evaluation. 
Method FR (8%) 

ESR [19] 17.00 
cGPRT [20] 12.83 
CFSS [16] 12.30 
Proposed 11.9 

 
TABLE IV: Ablation study of the proposed algorithm with and without the 

confidence and the augmentation sifting mechanisms. 
Method Common Challenge Full. 

w/ Confidence, w/ Augment 4.11 8.60 4.99 

w/o Confidence, w/ Augment 4.49 8.38 5.25 

w/ Confidence, w/o Augment 4.19 8.88 5.11 

w/o Confidence, w/o Augment 5.11 9.37 5.95 

VI. CONCLUSIONS 

In this paper, a semi-supervised algorithm with confidence 
and augmentation sifting mechanisms is proposed to detect the 
facial landmarks. With the two sifting mechanisms, only the 
pseudo labeled images with high confidence are adopted for 
semi-supervised learning. The proposed algorithm is helpful 
for improving the accuracy of facial landmark extraction and 
useful for facial image processing. 
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