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Abstract—In this paper, we propose a facial manipulation 
detection method based on multiple image noise analysis 
modalities and a two-branch prediction network to separation 
different types of forgery artifacts. The proposed architecture 
reveals whether the input image can be decomposed into a 
blending of two images from different sources, and checks 
whether some patches of the input image are generated from a 
deep learning networks at the same time. We observe that most of 
the existing forgery detection work] only focuses on finding one of 
the blending or manipulation artifacts in the input image. As a 
result, this method provides an effective way for forgery detection 
by simultaneously checking the manipulation and blending 
artifacts. In addition, for use with different types of image noise 
analysis modalities, our method can find more robust detection 
features in the high-frequency domain compared with 
traditionally detection in the RGB domain, thereby obtaining 
better performance. Extensive experiments show that our method 
outperforms other existing forgery detection methods on 
detecting synthesized face image, no matter on detecting training 
dataset or on detecting unseen face manipulation techniques. 

I. INTRODUCTION 

In the last few years, advances in computer vision and 
graphics are very significant. Nowadays AI-based generator [1, 
2] can generate realistic synthetic faces, which is challenge for 
humans and computers alike to distinguish between real and 
fake. We all agree that faces play a vital role in human 
interaction, a person’s face can represent one’s own identity 
and sometimes conveys a message by the facial expression or 
behavior. Nevertheless, the rapid development of the AI-
synthesized method of the forgery face (commonly known as 
“DeepFakes” for public) threatening the trustworthiness of 
information transmission. In a Deepfake video, the faces of a 
target person are replaced by the faces of a source person 
synthesized by the forgery face generator. Due to the strong 
association between face and identity, an elaborate Deepfake 
video can create bogus behaviors of the specific person’s 
activities. These forgeries may cause serious disputes and trust 
issues no matter to the individuals or to the country and society. 
As a result, to avoid widespread abuse of Deepfake videos, it 
is important to develop an effective method for detecting these 
face-swapping videos. 

Due to subtle differences in the generation process, each 
real image has its own unique mark, which may be caused by 
differences in software components or hardware settings. 
Generally, these marks tend to show a similar distribution 
throughout the whole image. On the other hand, a face- 
swapping image can be viewed as stitched image patches from 

different sources together (see Fig. 1), and this procedure 
would inevitable make some discrepancies located at the 
blending boundary. Some recent work [3-5] has focused on 
capturing the intrinsic image divergence across the blending 
boundaries, instead of relying on the generated facial forgeries 
for supervision. Compared with relying on manipulation 
artifacts, using the inconsistency between blending boundaries 
to measure forgery facial image does help to improve the 
model’s generalization ability. 

Although these studies have indicated that the use of the 
difference between the blending boundaries can help improve 
the generalization ability of the model, little attention has been 
paid to combining the blending artifacts with the manipulation 
artifacts together for forgery detection. If we can refer not only 
manipulation artifacts but also blending artifacts, the detection 
approach would be more robust intuitively. However, studies 
on separating blending and manipulation artifacts are still 
lacking. Therefore, from this perspective as a starting point, we 
proposed a framework for forgery facial image detection. 

The contributions of this paper are as follows. First, our 
experiments demonstrate that detecting both blending and the 
manipulation artifacts at the same time certainly improves the 
generalization ability through a thorough analysis. Second, 
using multi-modal noise analysis as input, we can extract more 
robust features to do prediction, compared with using an 
original RGB image as input. Third, in comparison with many 
previous face forgery methods, our experimental results show 
that this framework outperforms the performance in the              
in-dataset and cross-dataset evaluation. 

II. RELATED WORKS 

In this section, we will briefly introduce several deepfake 
detection techniques, from the early research on image forgery 
detection to the latest work related to our proposed method and 
some related dataset, as well as some related datasets. 

Figure 1. An overview of a typical face operation process. Previous works
detect artifacts produced by manipulation methods or blending steps, while our
approach focuses on detecting both. 
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Figure 2. The pipeline of high-pass filter DCT image noise analysis. 

 
Figure 3. An example of error level analysis of the input images. 

Face forensics datasets. The rise and progress of deep learning 
techniques such as VAE and GAN have made facial image 
processing of forensic models more challenging, because they 
not only fake facial attributes, but also retain more and more 
photo details such as poses, facial expressions, or lighting, etc. 
To support the research of facial manipulation detection works, 
several Deepfake related datasets [6-11] have been released 
and countermeasures have been introduced.  
Hand-crafted Deepfake Detection. Early handcraft detection 
methods [12-14] usually used the intrinsic statistics of forgery 
facial images for classification. However, for this type of 
detection method, it is difficult to generate features that is 
suitable for detecting different types of synthetic methods that 
are constantly evolving. 
Learning Based Face Manipulation Detection. Regarding 
the threat of image forgery in terms of privacy and trust issues, 
since 2018, many studies [15-17] have begun to detect face 
manipulation images. For instance, Xuan et al. [18] proposed 
to use image pre-processing steps, such as Gaussian blur and 
Gaussian noise, to remove low-level high frequency features. 
Kumar et al. [19] train a triplet network to enhance the feature 
space distance between the cluster of real and fake videos 
embedding vectors. Li et al. [20] employ the Long-term 
Recurrent Convolutional Networks (LRCN) model to capture 
temporal dependencies of human eye blinking. Masi et al. 
proposed a two-branch structure [21]: one branch propagates 
the original information, while the other branch suppresses the 
face content yet amplifies multiband frequencies using a 
Laplacian of Gaussian as a bottleneck. The goal is to isolate 
manipulated faces by learning to amplify artifacts while 
suppressing the high-level facial content. For improving the 
generalization ability, Face X-ray [1] and PCL [2] have also 
produced their own data generation pipelines, focusing on 
predicting the blending boundaries in fake video frames. 

Our method combines the viewpoints of several works and 
improves on their shortcomings. First, use a variety of different 
noise modalities to obtain advanced high-frequency features 
for detecting, which helps us to obtain more robust facial 
content during the training phase. Secondly, two-branch 
prediction involves not only blending artifacts, but also 

manipulating artifacts to maximize the use of artifacts present 
in deepfake pictures. To achieve the above points, we 
constructed a multi-task learning framework for the two 
prediction branches to predict the blending boundary and 
manipulation region in turn. 

III. PROPOSED METHODS 

In our approach, we try to use not only the manipulated 
artifacts, but also the blending artifacts at the same time for 
Deepfake detection. In other words, we will figure out the 
manipulation region and the blending boundary separately. 
Through this strategy, the model can achieve good 
generalization ability for some unseen datasets. The overall 
architecture composed of three parts: (A) Using multiple image 
noise analysis modalities as the training input, (B) Two 
branches of multi-task learning predict manipulation artifacts 
and blending artifacts, (C) Multi-task learning schedule: 

A. Multiple Image Noise Analysis Modalities 

Since Deepfake detection can be regarded as a binary 
classification of true and false, in most cases, training will 
easily face severe overfitting problems. To avoid overfitting on 
the training dataset and then reduce model generalization, we 
abandon the regular RGB image as input, and instead train the 
noise analysis of the input image. This strategy has several 
advantages. First, it can reduce the influence of the bias of the 
training dataset, because most of the dataset bias are the low 
frequency components or the low-level high frequency 
components in the facial images. Second, most face image 
synthesis methods evaluate generation quality based on RGB 
domain, so using the noise analysis of the input image to find 
the detection features is more able to find the robust features. 
Third, the noise analysis of the input image can be regarded as 
high-frequency facial content. Training on these high-
frequency components helps to find more high-level forgery 
artifacts for better performance. In our approach, we choose (I) 
high-pass filter DCT, (II) error level analysis and (III) photo 
response non-uniformity as the image noise analysis modalities 
we adopt. 

 
(I) High-pass filter DCT 

The DCT is a transformation that can convert the image 
from the spatial domain to the frequency domain, and the 
converted energy can be more concentrated in the low 
frequency. By doing this transform, we can separate the 
image into spectral sub-bands of different importance. 
image DCT conversion formula: 

𝐷ሺ𝑖, 𝑗ሻ ൌ
1

√2𝑁
𝐶ሺ𝑖ሻ𝐶ሺ𝑗ሻ ∙ 

෍ ෍ 𝑝ሺ𝑥, 𝑦ሻ𝑐𝑜𝑠 ቈ
ሺ2𝑥 ൅ 1ሻ𝑖π

2𝑁
቉ 𝑐𝑜𝑠 ቈ

ሺ2𝑦 ൅ 1ሻ𝑗π
2𝑁

቉

ேିଵ

௬ୀ଴

ேିଵ

௫ୀ଴

 

        𝐶ሺ𝑢ሻ ൌ ቊ
ଵ

√ଶ
, 𝑖𝑓 𝑢 ൌ 0

1, 𝑖𝑓 𝑢 ൐ 0
               (2) 

 
 

(1)

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1663



 
Figure 4. Image noise analysis example (high pass filter DCT, error level 
analysis, photo response non-uniformly) of a real image (YouTube) and fake 
images (Deepfakes, Face2Face, FaceSwap, NeuralTextures) from 
Faceforensics++.                        

The high pass filter design: 

𝐻ሺ𝑚, 𝑛ሻ ൌ ൜
0, 𝑖𝑓ሺ𝑚 ൅ 𝑛ሻ ൏ 𝑇

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                  (3) 

where T is threshold, m, n are the corresponding coordinate 
axes in the input spectrum.  

(II) Error-Level-Analysis 
This method can identify portions of an image with 

different compression levels. For any non-fake JPEG image, 
the entire photo should be roughly at same compression 
level. If an image has a significantly different error level, 
this may indicate that there might exist some digital 
modifications in the photo. The steps of this algorithm as 
following: 
1) Use the same image as the target image and pass uniform 

90% quality JPEG compression. 
2) The difference between the two images shows a variation 

of the artifacts in JPEG compression. 
(III) Photo Response Non-uniformity 

When a uniform light falls on the sensor array in a 
digital camera, the array would output slightly differently 
voltage due to the variety of factors, including small 
variations in cell size, material or interference with the 
local circuitry. This difference in response to a uniform 
light source is called Photo Response Non-Uniformity or 
PRNU for short. PRNU is one source of pattern noise in 
digital cameras. It is the pixel variation under illumination. 
The more detail information of PRNU extraction 
algorithm can see in [22]. 

B. Two Branches of Multi-task Learning Predict 
Manipulation Artifacts and Blending Artifacts 

As shown in Figure 1, due to the different formation stage, 
the property of the manipulation artifacts and the blending 
artifacts are distinct. The former is generated during the process 
of synthesizing face images because of the imperfections of the 

GAN-related or VAE-related techniques, and then the latter 
one is generated in the progress of fusing the synthesis face to 
the target real face due to the intrinsic image discrepancies in 
the blending boundary. Both types of artifacts will be present 
in almost every facial swapping image. We know that both two 
types of artifacts can help us distinguish fake images. 
Nevertheless, if we don’t separate these two forgery clues in 
training stage, then the model might be limited in performance 
on learning to recognize fake images. It might not be guarantee 
what will be learned more during the training steps. We don't 
know that the trained model will more rely on manipulation 
artifacts or on blending artifact to do deepfake detection. Then 
this will lead to the generalization ability of the model may be 
limited. 

To consider both manipulation and blending artifacts, we use 
two branches multi-task architecture for prediction. One branch 
is used to predict the manipulation region, and the other branch 
is used to predict the blending boundary. Each branch also 
combines a classifier for binary classification. The multi-task 
learning in our approach refers to the combination of semantic 
segmentation (region prediction) and binary classification 
(label prediction), also means to detection the manipulation 
region and the blending boundary. With the two-branch 
prediction network, we can detect the manipulation artifacts 
and the blending artifacts simultaneously in our work. The 
overall proposed architecture is shown in Figure 5. 

C. Multi-task Learning Schedule 

Since the output of our method has two branches, each 
branch predicts its own classification label and semantic 
segmentation mask, we must use multi-task learning to arrange 
our training phase. Our multi-task learning schedule is as 
follows. 

During the training process, in the first half of each epoch, 
we will train our two branch outputs in turn, that is, each 
iteration only backpropagates one branch output. In the second 
half of each epoch, we will train these two branches jointly. In 
each iteration, the respective loss functions of these two 
branches are calculated, and the average value is taken for back 
propagation. 

IV. IMPLEMENTATION  

A. Overall Procedure 

Inspired by [23], our solution based on three types of image 
noise analysis transforms: high-pass filtering performed by 
discrete cosine transform, error level analysis and photo 
response non-uniformity, combined in end-to-end pipeline for 
deepfake detection. We have introduced a fusion architecture 
with ResNet18 backbone as the feature extractor. Each noise 
analysis modality is processed by an individual ResNet18 
backbone, which returns latent vector of size d = 256. Then, 
connect these latent vectors to form a tensor of shape 3 × d. 
After that, apply Max, Avg and Min pooling in the first 
dimension, and concatenate the final feature vector to get a 3×d 
tensor as the feature embedding. Based on the ideas provided 
by [23], given different inputs, the importance of features of  
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Figure 5. Our frame-based face operation detection architecture. The input image is processed by three types of noise analysis methods: high-pass filter DCT, ELA, 
PRNU, and then through the ResNet18 backbone to do feature extraction. After that, the three feature embeddings are fused, so that the following modules can learn 
richer representations. A two-branch neural network is applied in the prediction stage. One branch is used to predict the manipulation region, and the other branch 
is used to predict the blending boundary.  

 
Figure 6. The pipeline of the pre-processing steps 

 
Figure 7. The ground truth mask definition for region prediction. The forgery 
mask is provided by the FF++ data set. We first apply Gaussian blur to the 
original fake mask, and then subtract the blur one from the original one to 
obtain the blended boundary area. The area outside the blending boundary is 
the background, and the area inside the boundary is the manipulation region. 

 
different modalities may be different. Therefore, various 
pooling strategies are better than just average pooling. Next, 
we flatten the embedding vector and pass it to the two-branch 
neural network for doing multi-task prediction. Each branch is 
composed with one projector, one decoder and one classifier. 
The projector is used to take out the manipulation or the 
blending artifacts part in the embedding vector. The decoder is 
used to prediction the manipulation region or the blending 
boundary of the input image. And the classifier is used to 
classify whether the noise analysis of the input image exists the 
manipulation artifacts or the blending artifacts. Finally, use the 
prediction scores of classifiers from the two-branch output to 
do average, we could get the final soft decision score of the 
deepfake detection results.  

In the proposed network, the number of epochs is 25, the 
batch size is 25, the optimizer is Adam, the learning rate is 
reduced from 1e-2 to 1e-6, and the scheduler is OneCycleLR. 

B. Pre-processing 

 Our solution is based on frame-by-frame classification 
approach. The flow chart of the pre-processing step is shown 
in Fig 6. For a training data video, we first use OpenCV as the 
frame extractor, and then use MTCNN as the face extractor for 
each frame to get the target face position. After obtaining the 

target face position, we crop these faces and save and resize 
them to shape 255x255 as the input facial image for our training. 

C. Data Augmentation 

 To achieve better generalization, we use heavy augmentation 
such as Image Compression, Gaussian Blur, Gaussian Noise, 
Random Crop, Flip, Rotation, etc. In the light of [24], adding 
some Cutout-like augmentations would also help to achieve 
better generalization ability. That is, we deleted some parts of 
the input image, hoping to improve the robustness of the model. 
The cutout-like augmentation we used is like the data 
augmentation techniques of Cutout [40] and Random Erasing 
[41]. The biggest difference is that when selecting the area to 
be discarded, we have added additional conditions to choose. 
For example, delete part of the input face based on facial 
landmarks or based on ground truth mask area. Combined with 
the other heavy data augmentation skills we mentioned in the 
paper, these enhancements can help our method achieve better 
generalization abilities.  

D. Loss Function 

  Our proposed architecture contains two branch prediction 
networks, one for detecting manipulation artifacts in the input 
image, and the other for detecting blending artifacts. For each 
branch, the output will predict about the classification score 
and the region of the artifact location. In other words, this is a 
combination of binary classification tasks and semantic 
segmentation tasks. In the former task we choose the binary 
cross entropy as the loss function, and in the latter task we 
choose the cross entropy as the loss function. The definition of 
the ground truth masks for semantic segmentation tasks is 
shown in Figure 7. 

Moreover, to train the Faceforensics++ dataset, since the 
dataset contains 4 different face manipulation methods, we pull 
in the triplet loss as a clustering loss, which is used for 
clustering manipulation artifact features in each different types 
of face manipulation method. The cluster loss only applies to 
the manipulation branch, and is not calculated in the blending 
branch. That's because we assume that for different face  
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TABLE I:  In-dataset evaluation results on FF++. Our method performs better on all manipulation types compared with other works. 

 
 

TABLE II: In-dataset evaluation results on Celeb-DF. 

 
TABLE III: Cross-dataset evaluation results on Faceforensics to Celeb-DF. 

 

manipulation algorithms, although the ways to generate virtual 
faces are different, post-processing always contains similar 
steps, such as blending, blurring, and color correction. 
Therefore, we believe that for different forgery methods, the 
manipulation artifact features are different, and the blending 
artifact features are similar to each other. 

         𝐿௟௔௕௘௟ ൌ 𝐵𝑖𝑛𝑎𝑟𝑦 𝐶𝑟𝑜𝑠𝑠 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 
       ൌ െ ∑ ሺ𝑐 𝑙𝑜𝑔 𝑐̂ ൅ ሺ1 െ 𝑐ሻ 𝑙𝑜𝑔ሺ1 െ 𝑐̂ሻሻሼ ூ,௖ ∈ ஽ ሽ  (4) 
 

L୫ୟୱ୩ ൌ  Cross Entropy 

ൌ െ ෍
1
𝑁

෍൫𝑀௜,௝ 𝑙𝑜𝑔 𝑀෡௜,௝ ൅ ൫1 െ 𝑀௜,௝൯ 𝑙𝑜𝑔ሺ1 െ 𝑀෡௜,௝ሻ൯
௜,௝ሼ ூ,஻ ∈ ஽ ሽ

 

𝐿௖௟௨௦௧௘௥ ൌ  Triplet Loss 

ൌ ෍ ቂฮ𝑓ሺ𝜒௜
௔ሻ െ 𝑓൫𝑥௜

௣൯ฮ
ଶ

ଶ
െ ‖𝑓ሺ𝑥௜

௔ሻ െ 𝑓ሺ𝑥௜
௡ሻ‖ଶ

ଶ ൅ 𝑎ቃ
ே

௜
 (5) 

where 𝐼  represents the input image, 𝑀  denotes the 
corresponding ground truth mask of the manipulation region or 
the blending boundary, and 𝑐  is a binary label specifying 
whether the image is real or fake. 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠 ൌ 𝜆௟௔௕௘௟𝐿௟௔௕௘௟ ൅ 𝜆௠௔௦௞𝐿௠௔௦௞ ൅ 𝜆௖௟௨௦௧௘௥𝐿௖௟௨௦௧௘௥ 
                                     (6) 
The loss weight balancing parameter we adopt here 
is ሼ𝜆௟௔௕௘௟, 𝜆௠௔௦௞, 𝜆௖௟௨௦௧௘௥ሽ ൌ ሼ1.0, 25.0, 5.0ሽ. 

V. EXPERIMENTS  

Several experiments are conducted to show the 
performance of the proposed defake algorithm. We use the 
most commonly used metrics in the literature to evaluate 
Deepfake detection results, including area under the ROC 
curve (AUC) and average accuracy (AP). The higher the 
AUC or AP value, the better the performance. The evaluation 
result in the experiment is at the video level, which is calculated 
by averaging the classification score of the video frame. 

A. In Dataset Evaluation Datasets 

To evaluate our experimental results, we selected some state-
of-the-art datasets (FaceForensics++, Celeb-DF) for 
verification, and compared the results with some works on the 
same topic.  

FaceForensics++ [6] is by far the most famous and popular 
dataset in the Deepfake detection research community. This 
dataset was proposed in 2019 as an extended version of the 
FaceForensics [26] dataset. It consists of 1000 real video 
sequences extracted from YouTube and processed using four 
automatic face manipulation methods: "Deepfakes", 
"Face2Face", "FaceSwap" and "NeuralTextures". The 
evaluation result is shown in Table I.  
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Figure 8. The saliency map of two prediction branch (manipulation & blending). The left half is the saliency map of the manipulation branch, and the right half is 
the saliency map of the blending branch. We could see that the saliency map in manipulation branch is more concentrated on the middle patch of the input facial 
noise analysis image. For the saliency map of the blending branch, we see that it is close to forming a complete facial boundary. We can interpret it as the facial 
boundary is more important for the forgery detection of the blending branch. 

 
TABLE IV: Ablation study on the impact of cross-dataset performance. We 
trained our detection model on the FF++ dataset and tested it on CD2 to see the 
effect of different experimental settings on the generalization ability of the 
model. 

 
Compared with the FaceForensics++ dataset, Celeb-DF-v2 

[27] aims to provide fake videos of high visual quality, which 
is closer to the Deepfake videos circulating on the Internet. 
This dataset consists of 590 real videos extracted from 
YouTube by 59 celebrities and 5639 fake videos. The fake 
videos are created by a refined version of the public Deepfake 
generation algorithm, which improves the synthesis of faces 
such as low resolution and color mismatches, inaccurate face 
masks, etc. The performance of our work trained in this dataset 
is shown Table II.   

B. Cross-Dataset Evaluation 

 A big problem of deepfake detection is the evaluation of the 
generalization ability of each detection algorithm. Due to the 
binary classification property of this task, it does not seem to 
be a difficult problem for researchers to obtain excellent 
performance in the in-dataset. However, these excellent 
performances evaluated in the in-dataset often means 
overfitting with the training data, which cannot be maintained 
well when encountering unseen synthetic methods. For real-
world scenarios, most of our detection methods need to face 
unseen forgery synthesis methods instead of known forgery 
methods. Therefore, maintaining good generalization ability is 
also one of the key points to evaluate deepfake detection 
methods. 

 Here, we designed a cross-validation experiment to test our 
method in aspect of the model robustness. Our model is first 
trained on the FaceForensics++ dataset, and then tested on the 
Celeb-DF-v2 dataset to make a scene to detect facial 
manipulation images on the unseen dataset. Table III shows the 
cross-validation performance results of our method in terms of 
AUC. We observe that even if the performance is significantly 
degraded in cross-evaluation, the performance of our method 
is still better than other referred face manipulation detection 
methods. 

C. Ablation Study 

We studied the effect of different experimental settings on 
the generalization ability of the model. Table IV shows that in 
our approach, cutout-like data augmentation plays a vital role 
in training model. Without cutout-like data augmentation in our 
work, the performance will not be much different from other 
previous forgery detection works. In addition, the hyper-
parameters of the input image noise analysis need to be 
carefully chosen. If our choice is not suitable enough, some 
forgery features may be discarded in the process of noise 
analysis, which will seriously reduce the performance of the 
model. 

VI. DISCUSSION 

The saliency map in Figure 8 shows that the degree of 
separation of the two artifacts has reached the result we 
expected. Although the saliency maps of the two branches still 
have a certain similarity, for the manipulation branch, it is still 
more concentrated in the middle patch of the input noise. Then 
for blending branch, it relies more on entire facial boundary 
instead of small feature blocks for prediction. Of course, we 
still have room for improvement the separation degree of these 
two types of forgery features. 

We also checked the t-SNE result of the two-branch feature 
embedding vector in Faceforensics++. The visualization result 
is shown in Figs. 9 and 10. Due to the use of cluster loss, the 
feature space distribution of the manipulated branch is the same 
as we expected, as in Fig. 9. Each forgery method and real 
video is in group and distinguishable from others. This is fully  
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Figure 9. the visualization t-SNE result of the manipulation branch features in 

Faceforensics++ dataset. 

 
Figure 10. the visualization t-SNE result of the blending branch features in 

Faceforensics++ dataset. 

in line with the nature of our previous assumptions: for each 
different forgery method, the extracted features of the 
manipulated artifacts should be different, while the features 
extracted of the blending artifacts should be similar. The 
distribution of the blending features in shown in Figure 9. We 
see that some forgery methods still have obvious clustering in 
blending features. This is a point that our method should be 
improved. It is not enough to use heavy data augmentation to 
separate manipulation and blending features. We would think 
how to define more constrain and tips for separate these two 
artifacts much more in future work. 

VII. CONCLUSIONS 

 We propose a face manipulation detection method with 
multiple noise analysis modalities, including high pass filter 
DCT, error level analysis and photo response non-uniformity. 
In addition, combined with the two-branch prediction network 
to separate detect the manipulation artifacts and the blending 
artifacts for forgery detection. The detection output of our 

method can not only give true and false soft decision scores, 
but also provide the location of the manipulation region and the 
blending boundary. Our experiments show that, compared with 
recent work, our method can obtain excellent performance and 
maintain certain performance when encountering cross-
evaluation. We show that it is not a bad idea to detect both 
manipulation artifacts and blending artifacts at the same time, 
but to maximize the detection ability of the two artifacts, we 
must have a good strategy to separate the two artifacts in a 
forged image. Hope our work can be a good reference for 
researchers who will study the same subject in the future.  
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