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Abstract—This work proposes an image restoration technique
by introducing an interscale thresholding with a structured
convolutional dictionary into a loop unrolled network based on
the proximal gradient descent (PGD) method. A non-separable
oversampled lapped transforms (NSOLT) in tree structure is
adopted as the dictionary, where the interscale linear expansion
of thresholds (LET) is applied as a Gaussian denoiser using
the plug-and-play technique. The design parameters of the
dictionary and thresholding function are made trainable, and
image restoration systems are designed with the deep learning
approach. Through the simulation of denoising and single image
super-resolution (SISR), it is confirmed that the proposed method
gives a high-performance feed-forward image restoration process
with few design parameters.

I. INTRODUCTION

With the development of measurement technologies, it is
now possible to acquire a large amount of different physical
data, such as tomographic imaging data and multi-dimensional
time-series data. Simultaneously, the demand for high per-
formance signal restoration is increasing. For high-efficiency
signal restoration, it is advisable to use a generative model
that can effectively represent the original signal. A generative
process is a mathematical expression of a prior knowledge
about the target signal model and it is employed in a lot
of image restoration techniques to enable sparse modeling,
wherein the generative model assumes that the essential in-
formation of the target signal can sparsely be reprensented
[1], [2]. A generative model is provided by a dictionary
consisting of atomic waveforms, which has a role to synthesize
signals from sparse features. In image restoration using sparse
modeling, iterative optimization processes are frequently used
[3]–[5]. While the interpretability of this approach is clear, the
processing speed and learning flexibility are disadvantages.

In the last decade, artificial intelligence (AI) has advanced
remarkably. In particular, deep learning, such as design for
convolutional neural networks (CNNs), has been applied in
various fields, including signal restoration [6], [7]. CNN is
a feed-forward-type neural network involving multiple layers
of convolution and nonlinear functions that extract the local
features of signals. Conventional CNNs can take the role
of a generative model, but it requires a large amount of
data for training. Unlike sparse modeling, most of the CNNs
proposed for image restoration face the challenge of poor
interpretability because they confuse the generative process
with the observation process, making them black boxes. In

Algorithm 1 Proximal gradient descent (PGD)
Input: x(0)

Output: x(n)

1: while A stopping criterion is not satisfied do
2: x(n+1) = proxγg

(
x(n) − γ∇f(x(n))

)
3: n← n+ 1
4: end while

addition, a large memory capacity is required for the large
number of design parameters, and overfitting is likely to occur
if there is insufficient training data.

Gregor et al. developed the learned iterative thresholding
algorithm (LISTA), which unrolls the iterative loop opera-
tions for solving a sparse-model-based problem. LISTA can
train a network containing synthesis dictionaries, observa-
tion processes and regularized denoisers [8]. Furthermore,
advanced methods have been proposed to improve the recovery
performance and to reduce the number of parameters [9],
[10]. LISTA is able to solve problems of the iteration and
learning limitations in the sparse modeling approach. However,
since generative process and gradient descent steps are trained
together, their interpretability is still controversial.

In order to gain the quality and to reduce the design
parameters in the loop unrolling approach, this study proposes
to introduce an interscale thresholding with a structured convo-
lutional dictionary to a proximal gradient-based loop unrolling
network. The proposed method can effectively reduce the
redundancy of parameters by using the knowledge of the filter
bank and interscaling. Therefore, it solves the problem of the
number of design parameters in conventional unrolling net-
works. The proposed method is a network that explicitly takes
account of the generative model and the observation process.
Since the optimization problem can be clearly understood, the
proposed method can solve the interpretability issue of the
conventional unrolling networks.

II. IMAGE RESTORATION BY SPARSE MODELING

In this section, let us review sparsity-aware image restora-
tion with the proximal gradient descent (PGD) method.

A. PGD algorhtm

The PGD algorithm is a popular primitive method in
sparsity-aware image restoration [11], [12]. PGD can solve
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problems in the following form:

x̂ = arg min
x∈RL

f(x) + g(x), (1)

where f : RL → R ∪ {∞} and g : RL → R ∪ {∞} are the
proper lower semi-continuous convex functions; ∇f(·) is the
µ-Lipschitz continuous. Note that g(·) is preferable to be a
function with a closed-form proximal operator.

Algorithm 1 shows the steps of PGD, where proxh(·)
denotes the proximal map of a function h(·), and γ is a step
size satisfying the condition 0 < γ ≤ 2/µ.

B. Restoration with synthesis dictionary

Let us consider applying the PGD algorithm to a sparsity-
aware image restoration problem. Sparse modeling is a tech-
nique to solve an inverse problem with a prior knowledge
that the essential information of the signal of interest is repre-
sented sparsely. By using an appropriate synthesis dictionary
D ∈ RN×L, an image u ∈ RN can sparsely be represented.
The synthesis of u is expressed as

u = Dx, (2)

where x ∈ RL is a coefficient vector.
In this study, we assume an observation model expressed as

v = Pu+w, (3)

where P ∈ RM×N is a linear measurement process, w ∈ RM
is an additive white Gaussian noise (AWGN), and v ∈ RM is
a contaminated observation.

A regularized least-squares problem is a typical application
of (1). A sparsity-aware image restoration problem with a
synthesis dictionary D is represented by

x̂ = arg min
x∈RL

1

2
‖Ax− v‖22 + λρ(x), (4)

where A = PD ∈ RM×L, ‖ · ‖2 is the standard norm, ρ(·)
is the regularizer, and λ is the regularization parameter. When
the regularizer is the `1 norm, i.e., ρ(·) = ‖ ·‖1, (4) reduces to
the least absolute shrinkage and selection operator (LASSO)
[13]. The optimization problem in (4) can be solved by PGD
in (1) by letting

f(x) =
1

2
‖Ax− v‖22 , (5a)

g(x) = λρ(x). (5b)

Then, the second step in Algorithm 1 is expressed by

x(n+1) = proxγλρ

(
x(n) − γAᵀ

(
Ax(n) − v

))
. (6)

Since

proxγg(x) , arg min
y

1

2γ
‖y − x‖22 + g(y) (7)

can be interpreted as a maximum aposteriori (MAP) estimation
of a signal x ∼ p(x) ∝ exp(−g(x)) contaminated by AWGN

Fig. 1. Architecture of LISTA, where ISTA’s loop is unrolled. The matrices
W and S, are learned, so as to minimize the approximation error of the
optimal sparse codes on a given dataset [8].

of standard deviation
√
γ, it is convenient to introduce another

expression of the proximal operator as a Gaussian denoiser

Gg(x,
√
γ) = proxγg(x). (8)

The representation in (8) allows for the extension of the
algorithm through a plug-and-play (PnP) approach [14]. For
ρ(·) = ‖·‖1, the denoiser reduces to the soft-thresholding, i.e.,

Gλ‖·‖1(x,
√
γ) = sign(x)�max(abs(x)− γλI,0), (9)

where � denotes the element-wise multiplication, i.e., the
Hadamard product. The PGD algorithm repeats this soft-
thresholding operation and gives us the iterative shrinkage
thresholding algorithm (ISTA) [3]. The PGD algorithm is
based on an explicit model, which is highly interpretable,
and has the advantage that it does not require an inverse
matrix and can approach the exact solution by repeating simple
operations. However, there are some issues such as lack of
flexibility in repeating the same operation and slow latency
due to iteration.

C. Learned ISTA (LISTA)
CNNs are capable of extracting features of input images

by reducing the dimensionality through operations such as
convolution, downsampling, and nonlinear activation. Zhang
et al. applied a multilayer network consisting of transpose
convolution, upsampling, nonlinear activation to the extracted
features to achieve image denoising [6]. Various proposals
have been made for image restoration using CNNs. Most
CNN-based image restoration methods show high perfor-
mance. However, they lack interpretability and have a problem
of overfitting easily without a large amount of training data
due to the large number of design parameters.

Gregor et al. developed the learned ISTA (LISTA), a pi-
oneering method of loop unrolling [8]. The loop unrolling
approach is an image restoration method with characteristics
intermediate between model-based iterative algorithms and
learning-based deep CNNs.

Fig. 1 depicts an example architecture of LISTA [8]. LISTA
unloops the iteration steps of ISTA and builds a feed-forward
network to learn the parameters of each layer independently
and build an image restoration unit with fewer iteration steps
(number of layers). In LISTA, (6) is rewritten as

x(n+1) = proxγλ‖·‖1

(
Sx(n) +Wv

)
= Gλ‖·‖1

(
Sx(n) +Wv,

√
γ
)
, (10)
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Algorithm 2 Inference by LISTA [8]
Input: v
Output: x(T )

1: b = Wv
2: x(0) = proxγg(b)
3: for t = 0 to T − 1 do
4: x(t+1) = Gλ‖·‖1

(
Sx(t) + b,

√
γ
)

5: end for

Fig. 2. Architecture of proposed loop unrolling network, where D is a
synthesis dictionary and P is a measurement process. Dᵀ is the adjoint of D
and has the role of analyzer. Note that D and Dᵀ are independently trained
so that the backpropagation is available.

where

S = I− γAᵀA, (11a)
W = γAᵀ, (11b)

where I is the identity. The corresponding inference prodedure
of T -stage LISTA is represented as in Algorithm 2.

III. LOOP UNROLLING WITH INTER-SCALE
THRESHOLDING

Since the proximal operator in (7) can be interpreted as a
regularized Gaussian denoiser as in (8), we can modify the
operation by assuming an implicit regularizer g(·). In this
study, we propose to introduce the interscale LET [16] as a

Fig. 3. A 3-level tree structure of multiscale synthesis NSOLT [15]

more effective Gaussian denoiser Gg and a hierarchical con-
volutional dictionary based on NSOLT as a trainable synthesis
dictionary D into the unrolled PGD method.

The gradient ∇f(x) of f(x) = 1
2 ‖Ax− v‖22 is expressed

by

∇f(x) = Aᵀ(Ax− v) = DᵀPᵀ(PDx− v). (12)

Then, the corresponding inference procedure of the proposed
PGD method can be shown as in Algorithm 3. Note that
the measurement process P, synthesis dictionary D, adjoint
dictionary Dᵀ and Gaussian denoiser Gg are all pluggable.
Fig. 2 shows the unrolled network architecture, where we
propose to replace the soft-thresholding in LISTA with the
interscale LET.

LET provides a shrinkage process that can optimize the
shape simulating a soft threshold. Luisier et al. proposed the
point-wise thresholding:

T (x; {ak}k) =
K∑
k=1

akxe
−(k−1) x2

2τ2 , (13)

where x is a wavelet coefficient. In this function, the authors
suggested to use K = 2 and τ =

√
6σ, where σ is the standard

deviation of noise w [16]. The denoising process is completely
characterized by a set of parameters. The authors of [16] also
proposed the following form of the shrinkage function:

T (x, xp; {ak}k, {bk}k) = e−
x2p

12σ2

K∑
k=1

akxe
−(k−1) x2

12σ2

+

(
1− e−

x2p

12σ2

) K∑
k=1

bkxe
−(k−1) x2

12σ2 , (14)

where xp is an interscale prediction of x obtained from the
wavelet parent-child relationship. The authors use the parent
xp as a discriminator between high and low SNR wavelet
coefficients. The parameters ak and bk are linearly solved for
minimizing some cost function. In order to use interscale LET,
it is necessary to compensate for the group delay characteris-
tics between scales. In this paper, we use NSOLT [17], which
guarantees the symmetry of filter kernels, as a convolutional
dictionary D to avoid group delay compensation. NSOLT can
construct a wavelet-like hierarchical structure that guarantees
the no-DC-leakage property [15]. Fig. 3 illustrates a synthesis
NSOLT architecture in tree level 3. All design parameters of
the synthesizer, analyzer, and their component layers are kept
independent so that the loop unrolling network can be trained
by the backpropagation method [18]. The parameters ak, bk,
and σ of the interscale LET are also trained independently.

IV. PERFORMANCE EVALUATION

In this section, we conduct image restoration to confirm the
effectiveness of the proposed method. The configurations of
NSOLT and the proposed network used in this simulation are
shown in Tab. I, where SFTH denotes the soft thresholding.
From Tab. I, the number of parameters in the proposed method
is less than 17k, while that in MobileNet [19], a small-scale
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Algorithm 3 Inference by PGD w/ synthesis dictionary
Input: v
Output: u(T )

1: u(0) = Pᵀv
2: x(0) = Dᵀu(0)

3: for t = 0 to T − 1 do
4: r = −γPᵀ(Pu(t) − v)
5: c = Dᵀr . Analysis process
6: x(t+1) = Gg

(
x(t) + c,

√
γ
)

. Gaussian denoising

7: u(t+1) = Dx(t+1) . Synthesis process
8: end for

TABLE I
CONFIGURATION OF THE UNROLLED PGD METHOD AND NSOLT

Unrolled PGD
# of blocks (Iterations) 3

Thresholding SFTH, LET
NSOLT

# of channels 8 + 8
Decimation factor 2× 2
Polyphase order 2 + 2
No DC-leakage True
# of Tree levels 4

network, is around 2M. In addition, parameters in proximal
operators such as λ and σ are to be learned. For training, we
use a patch decomposition of a set of case study images in
Fig. 4. Training specifications are shown in Tab. III.

A. Denoising

In denoising, the measurement process P is the identity, and
the observation image is contaminated only by AWGN w. In
this evaluation, we assume AWGN w with standard deviation
of σw = 50/255.

The simulation results are shown in Fig. 5 and Tab. IV. For
comparison, we adopted Approximate Convolutional Sparse
Coding (ACSC) [2], a noise restoration method based on
LISTA, Denoising convolutional neural network (DnCNN)
[6], a CNN-based restoration method, and DRUNet [20], a
method integrating residual blocks into U-Net for effective
denoiser prior modeling. ACSC, DnCNN and DRUNet are
trained under the specifications shown in Tab. III. The number
of parameters for each network is shown in Tab. II. From
Fig.5, we see that high-quality recovery is possible even with
fewer than 17k parameters. The performance of the proposed
method compared to ACSC and DRUnet indicates that there
is room for improvement in the configuration of the dictionary
D. The comparison between soft thresholding and inter-scale
LET shows the effectiveness of the latter.

Fig. 4. Case study image set. The images are degraded, and patches of size
128× 128 are extracted for training.

TABLE II
COMPARISON OF THE NUMBER OF PARAMETERS BETWEEN THE

CONVENTIONAL AND PROPOSED METHOD

Network name # of learnable parameters
Denoising SISR

DnCNN 555k -
ACSC 45k -
CSCN - 42k
VDSR - 665k

DRUnet 33M
Soft Th. 15k

LET 17k

TABLE III
TRAINING SPECIFICATIONS

Optimizer Adam
# of epochs 50
Patch size 128× 128
Batch size 16

# of patchs per image 128
# of images 5

# of iterations 2000

B. Single image super resolution (SISR)

In single image super resolution (SISR), the measurment
process P is modeled by convolution and downsampling. For
comparison, we adopted the cascade of sparse coding based
network (CSCN) [21], a noise restoration method based on
LISTA, Very Deep Super Resolution (VDSR) [22], a CNN-
based restoration method and DPIR [20], a detailed algorithm
of HQS-based plug-and-play IR with deep denoiser prior.
ACSC and CSCN are trained under the specifications shown
in Tab. III. DPIR used DRUnet as a denoiser. The number
of parameters for each network is shown in Tab. II. In this
evaluation, P is set to Gaussian filter of size 9 × 9 with
a standard deviation of σp = 2 downsampling with factor
4 × 4, and w is set to AWGN with standard deviation of
σw = 20/255, respectivery.

The simulation results are shown in Fig. 6 and Tab. V. From
Fig.6, CNN and conventional LISTA-based recovery methods
showed little difference from bicubic. In these methods, the
observation process P cannot be explicitly set. This result can
be due to the fact that complex observation processes require a
large amount of training images. The proposed method solves
this problem by explicitly setting the observation process P,
and is able to extract image features even with a small number
of training images. The interscale LET further shows a better
restoration result than conventional soft thresholding.

TABLE IV
QUANTITATIVE RESULTS IN PSNR FOR DENOISING, WHERE UPGD

DENOTES THE UNROLLED PGD.

Image Fruits Girl Monar. Parrot Tulips Ave.
DnCNN 25.60 25.40 25.51 26.31 25.22 25.62
ACSC 28.31 27.67 26.92 28.70 26.84 27.69

DRUnet 28.21 27.75 27.72 28.78 26.92 27.88
UPGD-SFTH 26.31 25.78 26.39 27.06 25.96 26.31
UPGD-LET 27.17 26.56 27.20 27.87 26.79 27.12
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 5. Denoising results. (a) ground truth, (b) noisy observation with PSNR:
14.88dB, (c) DnCNN with PSNR 25.51dB, (d) ACSC with PSNR 26.92dB,
(e) DRUnet with PSNR 27.72dB (f) soft-thresholding network result with
PSNR: 26.39dB and (g) LET network result with PSNR: 27.20dB.

TABLE V
QUANTITATIVE RESULTS IN PSNR FOR SISR, WHERE UPGD DENOTES

THE UNROLLED PGD.

Image Fruits Girl Monar. Parrot Tulips Ave.
Bicubic 20.77 21.38 19.31 21.33 19.74 20.51
CSCN 20.89 21.39 19.34 21.34 19.78 20.54
VDSR 20.82 21.88 19.32 21.31 19.77 20.51
DPIR 22.72 23.08 21.82 22.93 22.56 22.62

UPGD-SFTH 23.28 24.73 21.66 24.28 22.54 23.30
UPGD-LET 24.30 25.43 22.50 24.97 23.37 24.11

V. CONCLUSIONS

In this study, we proposed an image restoration technique by
introducing an interscale thresholding technique with a struc-
tured convolutional dictionary into a loop unrolling network
based on the PGD method. From some simulation results, we
verified that comparable or better performance was obtained
with fewer learning parameters. Especially, the experiments
showed the effectiveness of the proposed method when the
observation process P has degradation and is identified. How-
ever, the denoising exeriments showed that there is room
for consideration in the generative process. It also should
be noted that the gradient calculation of the parameters of
NSOLT takes a long time, and the learning time has not been
reduced yet. We plan to further improve the performance of the
proposed method in terms of quality and speed by improving
the dictionary structure and implementation.

(a) (b) (c)

(d) (e) (f)

(g)

Fig. 6. SISR results. (a) ground truth, (b) bicubic interpolation with PSNR:
20.77dB, (c) CSCN result with PSNR 20.89dB, (d) VDSR result with PSNR
20.82dB, (e) DPIR with PSNR 22.72dB (e) soft thresholding network result
with PSNR 21.66dB and (f) LET network result with PSNR: 24.30dB.
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