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Abstract— Blind image deblurring aims to remove the blur 

generated from camera motion or moving objects. Advance of 

deep end-to-end learning methods showed superiority in 

removing non-uniform motion blur, but there still exists unsharp 

blurriness due to the pixel-wise loss in a restored image using 

deep deblurring methods. Therefore, we propose a simple and 

effective iterative edge map guidance to restore spatial details. 

The proposed method extracts the edge map of the blurred input 

image prior to the image deblurring process and restores it to a 

clear edge map. We use the edge map information for image 

deblurring task. Therefore, unlike conventional methods, the 

proposed method performs deblurring by considering the edge 

information of the clear image, which leads to restored images 

with sharper edges. Furthermore, the proposed method 

iteratively reconstructs sharp images and edge maps on multiple 

scales. This iterative scheme can further improve performance 

due to the advantages of weight-sharing with multi-scale training. 

We found that the proposed method showed 0.26dB higher 

PSNR compared to the original method for GoPro dataset. 

I. INTRODUCTION 

Blind image deblurring aims to restore a blurred image 

with little information about the blur kernel. Blur caused by 

camera shakes, moving objects or low shutter speed not only 

brings quality degradation of acquired image, but also results 

in information loss. Therefore, it is essential to remove 

blurring artifacts and restore image details in vision tasks 

where clean and sharp images are appreciated.  

Prior to the success of deep learning, conventional 

deblurring methods were studied by applying a variety of 

constraints to approximate the motion blur kernels, but they 

require an expensive non-convex nonlinear optimization. 

Furthermore, designing such priors is a very challenging task, 

and the commonly used estimation of spatially invariant blur 

kernel is hard to generalize the real-world motion blur, 

resulting in a poor deblurring performance of complex blur 

patterns. 

To alleviate this issue, convolutional neural networks 

(CNNs) were applied to implicitly learn regression between a 

blurry image input and the corresponding sharp image or to 

learn general image priors in an end-to-end manner from 

large-scale data. Among the state-of-the-art architectures for 

deblurring, the self-recurrent module is widely adopted to 

restore both low-level contextual feature and high-level 

spatial details. Nah et al. [1] propose scale-cascaded structure 

for deblurring. In this coarse-to-fine scheme, finer scale image 

deblurring is aided by coarser scale features. This coarse-to-

fine scheme has been applied in different form of architecture 

such as multiple-scale network [2, 3] or multiple-patch 

hierarchical network [5, 6]. 

However, despite the pros of using the guidance from 

coarse network to fine network by using this approach, there 

also exist cons of fixed architecture with longer inference 

time due to recurrent mechanisms. Also, scaling a blurred 

image into lower resolution in multi-scale network structure 

results in loss of information. Furthermore, splitting a blurred 

input image into multiple patches is not suitable for handling 

non-uniform blur in dynamic scenes. Therefore, their 

proposals show some inadequacies when applied to various 

real-world blurred images. This paper addresses major 

following challenges of deep deblurring. 1) Following similar 

pipeline of the coarse-to-fine scheme, multiple-scale or scale-

recurrent architecture results in the large number of 

parameters in training and results in longer inference time. 2) 

In the process of generating low resolution blurred image, the 

information loss is inevitable and deblurring performance 

without any guidance is bound to fail in restoring spatial 

details like edge feature. 

We propose a novel architecture, the gradient-guided 

self-iterative upscaling network, to overcome the issues, with 

following key components. First, we utilize gradient features 

to restore a sharp image from a blurred image input to boost 

performance of high-level features like edge information. By 

exchanging features of edge map information extracted from 

blurred and sharp images to the original deblurring path, our 

model can restore better edges by compensating the limitation 

of pixel-wise loss that most multi-scale models suffer. Second, 

we adopt the iterative scheme across multi scales, which 

allows us to have fewer trainable parameters than scale-

cascaded structure. Compared with previous fixed-level 

architectures, our network shows flexibility by applying 

different iterations for training and test by using shared 

weights. Our main contributions are summarized as follows: 

 

⚫ We utilize the extracted gradient features from blurred 

image inputs and estimate the corresponding gradient 

features to restore sharper edges and compensate the 

blurriness from pixel-wise loss. 

 

⚫ The sharp image and the edge map are predicted 

iteratively across multi scales by using shared weights, 

which enables to flexibly apply different iterations for 

training and test. 
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II. PROPOSED METHOD 

Fig. 1 gives the architecture of our proposed scale-iterative 

upscaling network with edge map guidance (SUNG). SUNG 

consists of two modules, feature extraction module and image 

restoration module. The feature extraction module consists of 

two paths, a deblurring path and an edge path. For an I-

iteration deblurring process, we first generate a set of pyramid 

blurred images Bi (i = I, I – 1, ···, 0) with Bi denoting a 1/2i 

down-sampled image with corresponding restored output 

image Si. The deblurring process starts from the smallest scale, 

i = I. At the very beginning, where we do not have the 

predicted sharp image, we assume SI = BI for the 0th output.  

Feature extraction module consists of a deblurring path and 

an edge map path. The deblurring path performs a typical 

deblurring operation with input pair of blurred images, Bi+1, 

and corresponding predicted sharp image, Si+1. At the same 

time, edge map of same blurred and predicted sharp image 

pair is fed to the edge map path. The features extracted from 

each path are Fi+1 and Gi+1. These two output features are 

upscaled and concatenated with the next blurred input image 

Bi. By applying this concatenated feature to the U-Net 

structure, restored sharp image Si is obtained. Then Si is 

concatenated with the next blurred input Bi, which becomes 

the next blurred and sharp image input pair for the iterative 

process. 

By iteratively repeating the above process, the size of the 

restored sharp image is upscaled until it reaches full 

resolution. This full resolution image is taken as the final 

output.  

A. Deblurring Path 

We used the deblurring path first proposed by Ye et al. [6]. 

The deblurring path is constructed by using a modified 

residual dense network (RDN) [7], combined with a U-Net 

structure with skip connections between features across the 

overall deblurring path. A pair of blurred and sharp images is 

concatenated as an input of the deblurring path. After a 

convolution layer and U-Net structure, a feature with 32 

channels is passed through the 3 residual dense blocks 

(RDBs) in order. These features are then concatenated and 

passed through a convolution layer, which is again 

concatenated with the first output feature of the convolution 

layer with skip connection. The output feature of deblurring 

path Fi+1 has is then upscaled for the next process. 

B. Edge Path 

The edge path is to estimate the translation of edge maps 

from the blurred modality to the sharp one. By applying a 

convolution layer with a fixed kernel, an edge map of an 

image is easily obtained by computing the difference of the 

adjacent pixels. By focusing on the intensity, not the direction, 

of the edge map, we can obtain sharpness in an image. 

Therefore, an edge map can be regarded as another kind of 

image, and the image-to-image translation technique can be 

applied. We utilized this edge map information to introduce 

an auxiliary loss, which will be explained in the section D.  

The edge map path generates the output feature Gi+1 by the 

input of edge map from blurred and sharp image pair, unlike 

the deblurring path where a pair of the blurred and sharp 

images is fed. It passes through a convolution layer, U-Net, 

and a single RDB, and another convolution layer. Single RDB 

was enough to extract edge information of blurred image to 

restore edge map of corresponding sharp image. With 

guidance of Gi, we could predict images with sharper edges. 

Visual comparison results are shown in Fig. 2. 

C. Image restoration module 

Three features are concatenated to estimate the sharp image 

Si in the image restoration module. Gi is the upscaled feature 

output of the edge path, Fi is the upscaled feature output of 

the deblurring path, and Bi is the next blurred image. The 

concatenated feature is then fed to another U-Net to estimate 
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Fig. 1   Overall architecture of scale-iterative upscaling network with edge map guidance (SUNG). 
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the sharp image. The output feature Si is the restored image of 

the ith iteration, and it is concatenated with Bi-1 to extract 

features in feature extraction module for the next iteration. 

D. Objective Functions 

Conventional Loss: Most deblurring methods optimize their 

networks by a common pixelwise loss, which is efficient for 

task of blind image deblurring by PSNR. To minimize the 

pixel difference between the ground-truth image and the 

blurred input image and to accelerate convergence of training, 

the pixel loss is widely used: 

 

LPix = || Si – GTi ||1, 
 

where GT denotes the ground-truth image. Unlike these 

benefits of using pixel loss, overall visual coherency may 

decrease since it is based on PSNR. Thus, the result may not 

be able to restore sharp edges that needs to be restored. 

Therefore, using the pixel loss alone is not suitable for 

deblurring task, and we introduce the following edge loss to 

alleviate this issue. 

Edge Loss: First, we adopt an auxiliary edge loss between 

edge maps of predicted sharp image M(Si) and edge maps of 

ground-truth sharp image M(GTi), to utilize edge information 

in the image restoration module as a guidance to restore 

sharper edges: 

 

LEdgeAux = || M(Si) – M(GTi) ||1. 

Note that an output feature of edge map path is used to 

generate an input feature for image restoration module. To 

better reconstruct predicted sharp image Si with sharper edge, 

supervision of edge map feature Gi is essential, and it is 

learned to mimic the edge maps of ground-truth image, 

M(GTi). Therefore, we apply supervision edge loss for 

successful feature extraction of edge map path: 

 

LEdgeSup = || Gi – M(GTi) ||1. 

 

Overall Objective: LPix is used to optimize in a pixel-wise 

level, as most conventional deblurring task does. LEdgeAux is 

used to restore the blurred image to mimic its edge to sharp 

image edges. This is done only with the guidance of LEdgeSup, 

which is to generate high-quality edge maps with given 

blurred image edge map. The overall objective is defined as 

follows: 

 

L = LPix + LEdgeAux + LEdgeSup. 

III. EXPERIMENTS 

A. Implementation Details 

Training, Validation, and Test Datasets: We trained and 

evaluated our methods on GoPro dataset [1], which contains 

large-scale real-world blurred and sharp image pairs. GoPro 

dataset consists of 3214 pairs of blurred and sharp images 

with 720 × 1280 resolution. 2103 image pairs were used for 

training and remaining 1111 pairs were used for testing. 

Training and Test Details: For training, we trained the 

network with iteration = 3. We used Adam optimizer with β1 

= 0.9, β2 = 0.999, and ε = 10-8. We also used 256 × 256 patch 

randomly cropped from GoPro training dataset as the input 

with a batch-size of 16. 500 epochs with the learning rate 

decay rate of 0.5 was applied every 100 epochs. The model 

was implemented on PyTorch framework and trained on 

GEFORCE RTX 3090 GPUs. Benefiting from shared weights 

of iterative scheme, we adopted iteration = 4 in test phase for 

our best performance. 

B. Experimental Results 

We compared our method with other state-of-the-art 

methods on the GoPro dataset. We chose Tao et al. [3] and 

Zhang et al. [5] for comparisons. Table. 1 shows the results of 

comparison with these state-of-the-art methods on benchmark 

dataset. For evaluating Tao et al. [3], we used their “color” 

 

Fig. 2   Visual comparison of edge map. From top to bottom, each row 

depicts edge map extracted from blurred image, ground truth image, and 

estimated sharp image by SUNG, Si. 

Table. 1   Comparisons on GoPro dataset with state-of-the-art methods. 

The best performance is shown in red and second-best is in blue. 

Method 
GoPro 

(PSNR/SSIM) 

Tao et al. [3] 30.25 / 0.9030 

Zhang et al. [5] 30.45 / 0.9057 

Ye et al. [6] 30.21 / 0.9041 

Ours (SUNG) 30.47 / 0.9047 

 

(1) 

(2) 

(3) 

(4) 
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model among (lstm/gray/color) models released by the author. 

For evaluating Zhang et al. [5], we used their best 1-2-4-8 

DMPHN model. The PSNR and SSIM evaluation on GoPro 

dataset are calculated by MATLAB built-in function. For 

evaluating baseline model Ye et al. [6], best learning strategy 

with 3 iterations was adopted. 

From Table. 1, our SUNG model shows better performance 

compared to other methods on GoPro dataset. Our model was 

slightly better than Zhang et al. [5] in PSNR and had the 

comparable performance in SSIM. Also, compared with 

similar structure using iterative scheme, our model performed 

better in both PSNR and SSIM. Although they have the 

similar structure, our model performed better by using the 

guidance of edge map information. Visual comparison results 

on benchmark dataset, GoPro dataset, are shown in Fig. 3. 

IV. ABLATION STUDY 

We further studied effectiveness of our edge map guidance 

with the edge loss. To show that the performance 

enhancement was due to our edge map guidance, not the 

deepness of the model, we constructed a model with same 

depth as our model but without the edge map guidance. We 

call this base model, by adding two convolution layers with 

U-Net and RDBs to the deblurring path to make the same 

model size of our edge map guidance model SUNG. The 

qualitative and quantitative results between base model and 

our model are shown in Fig. 4 and Table. 2. 

Fig. 4 shows the comparison of the base model and our 

model with edge guidance. These images cropped from 

 

Fig. 3   Visual comparison on benchmark datasets. From top to bottom are 

blurry input, deblurring results of Tao et al. [3], Zhang et al. [5], Ye et al. 
[6], and ours 

 

Fig. 4   Comparisons between proposed model with base model. From left 

to right, GT images, ours, and base model images. 

Table. 2   Comparison with same model size w/ and w/o edge map 

 PSNR SSIM 

Base 30.17 0.9038 

Our proposed model 30.47 0.9047 
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GoPro test dataset for qualitative evaluation. Compared to the 

results of the base model, our results restored the finer details 

in the textures and restored edge or the letters more clearly. 

Furthermore, as shown in Table. 2, model with edge map 

guidance showed 0.3dB higher performance even with the 

same model size. Therefore, it is shown that the performance 

improvement comes from the edge map guidance structure 

rather than the depth of a network. 

V. CONCLUSION 

In this paper, we propose a scale-iterative upscaling 

network with edge map guidance (SUNG). Our model 

extracts gradient features from blurred image inputs and 

estimates the corresponding gradient features to restore 

sharper edges to compensate the blurriness from pixel-wise 

loss. Also, our model predicts the sharp images and the edge 

maps iteratively in multi scales by using shared weights. This 

allows our model to achieve flexibility by applying different 

iterations for training and test. As a result, our model achieves 

0.26dB better performance than the base model without using 

the edge map feature, and this scheme can be applied to other 

models or tasks to aim for performance enhancement. 
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