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Abstract—Modern camera sensors are equipped with a focus
pixel, a special type of pixel that can collect separate light rays
from the left (L) and right (R) directions. The phase difference
between the corresponding L/R pixels is utilized to facilitate
quick auto-focusing. In this study, we expand the usability of
the special pixels to super-resolve an image. We design a neural
net to best fuse multiple low-resolution focus pixel images with a
normal image based on repetitive channel and spatial attention
layer structures. Empirical results show that focus pixel images
contribute to the creation of fine details by providing additional
information to super-resolve an image, especially for textured
areas and that the proposed neural net-based method enhances
the state-of-the-art super-resolution methods that do not use focus
pixels in quantitative and qualitative measures.

I. INTRODUCTION

Super-resolution (SR) methods are required to generate
a high resolution images in many smartphone applications.
For example, smart phone cameras typically do not have
optical zoom lenses due to space and cost constraints. When
zooming is needed, a common method is to crop the re-
quired portion of the entire sensor area and then up-sample
or super-resolve the cropped image to restore the original
image size. However, blind super resolution methods in-
herently lack of high-frequency spatial information. Various
methods have been proposed over the years to tackle this
problem [1], [2], [3], [4], [5]. In the meantime, deep-learning
techniques have been successfully applied and have broken
records in all literature. SR has also been greatly improved
by deep learning techniques [6], [7], [8], [9]. Nevertheless,
obstacles remain in accurately recovering the missing content.
In general, the performance of SR increases as the depth
of the network increases, which cannot be implemented in
smartphone cameras for real-world use cases.

Instead of designing a heavy and complicated network
structure, we leverage focus pixels to enhance SR by providing
the network with more convincing information hidden in the
focus pixels. Focus pixels in modern camera consist of pairs
of left (L) and right (R) pixels that separate light from the
L/R directions. The L/R pixel groups are created as L and R
images with spatial phase difference. The two images finally
construct a single disparity map for fast and smooth auto-
focus, reducing unnecessary lens searches. Some studies have

demonstrated that utilizing the focus pixels is highly beneficial
in areas such as depth estimation [10], reflection removals [11],
de-blurring [12], and HDR [13].

In this study, we proposed a new deep-learning method for
super-resolving a single image from a focus pixel sensor. Even
though the eight L/R images from the focus pixels in the
study have 1/8 resolution to the corresponding low resolution
image at the input, they are jointly fused and extracted into
useful features through the novel dual attention structure, and
they are concatenated with the feature of the original low
resolution image. The combined features are up-scaled with
pixel shuffling step by step to construct a high-quality high-
resolution image at output. To the best of our knowledge, this
is the first attempt exploiting focus pixels at SR imaging.

Section II is a review of the related works and Subsection
III-A briefly explains the focus pixel sensor used in the study.
The proposed deep neural network architecture is introduced
in the rest of Section III. The experimental results and ablation
studies are presented in Section IV. Finally, the conclusions are
discussed in Section V.

II. RELATED WORK

Single image SR (SISR) methods are mainly divided into
several branches. Interpolation-based SR methods such as
bilinear and bicubic interpolation [14] are the simplest and
most straightforward techniques to obtain a high resolution
image. These methods are widely used in many computer
vision system due to their high processing speed, but suffer
from the blurring of the resulting image. Reconstruction-
based SR methods have been proposed to overcome this
problem [15], [16], [17]. They often generate sharp details
by regularizing output pixels to lie in a predefined space
using image priors. Learning-based (or example-based) SR
methods [18], [19] learn the statistical relationships between
the low resolution (LR) and the corresponding high resolu-
tion (HR) images exploiting external datasets. These methods
utilize LR-HR feature matching to produce visually pleasing
image textures.

Multiple image SR (MISR) methods take the advantage
of variations in sample data at slightly different locations
and time intervals [1], [4]. Unlike SISR, these methods have
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demonstrated reliable performances on real-world stationary
scenes due to the additional pixel information. Deep-learning
based methods have shown outstanding performances on both
SISR [6], [20], [7] and MISR [21]. However, these methods are
cumbersome to apply to lightweight mobile processing engines
because they rely on an explosive number of parameters and
large computations to generate plausible and sharp images.

Focus pixel sensors were first introduced to the mobile
market in the early 2010s. Researchers have recently become
interested in the focus pixel sensor because its use cases were
limited in auto-focusing in its infancy. The sensor has L/R
subpixels in a single micro-lens, and they create parallax
to measure the distance to an object in front, just like the
human eyes do. Various types of focus pixel sensors have
been developed. Some dual pixel sensors have a pair of L/R
subpixels for every single pixel on the sensor. For high-
resolution imaging, only a limited percentage of the pixels
are used for focus pixels.

A few researchers have conducted on studies on applying
the focus pixel images to computational photography such
as depth extraction [10] and reflection removal [11]. Instead
of using a stereo camera or depth sensor, the L/R subpixels
in the focus pixel sensor played a key role in estimating
depth information in these methods, proposing that a focus
pixel sensor is an alternative to a distance-measuring de-
vice. Interestingly, focus pixels were also used in recent de-
blurring [12] or HDR [13] studies that seemed unrelated to
depth extraction, but they also showed a huge improvement
over the previous methods that did not use focus pixels in
those studies. Motivated by the fact that the L/R pixels in
focus pixel sensors can be a useful resource to train a deep
neural-net in a more robust manner, we propose a novel deep
learning-based SR method that best utilizes the focus pixels
by combining them with the conventional RGB images. The
proposed method has a relatively simple neural-net structure,
but outperforms the existing state-of-the-art SISR methods that
do not use focus pixels.

III. PROPOSED METHOD

A. Focus pixel sensor

The focus pixel sensor in this study is a type of a sensor
that performs L/R beam separation in the on-chip lens (OCL)
as depicted in Fig. 1(a), and the corresponding sensor array
pattern is illustrated in Fig. 1(b). The total number of focus
pixel marked by yellow in Fig. 1(b) is approximately 1/8 of the
total number of pixels in the sensor. Unlike the conventional
RGGB or RGBG Bayer pattern, this type of sensor has a 2×2
array of pixels with the same color filter. In the sum-binning
operating mode, the photons of the 2×2 pixel array of the
same color are merged and converted into a single pixel value
for better sensitivity. The focus pixels are usually darker than
the merged RGB pixels for this reason.

From the raw sensor structure in Fig. 1(b), a full-resolution
RGB and eight focus pixel images are obtained by the process
depicted in Fig. 2. The merged Bayer raw is demosaiced,
white-balanced, color corrected, and converted into a sRGB

image sequentially. The resulting RGB images are used as
high-resolution images for groundtruth in this study. Focus
pixels are grouped in the form of an image depending on
the same location, and the resulting eight images are directly
converted to sRGBs and stacked channel-wise because they
are achromatic. Please refer to [13] for a more detailed
explanation.

(a) (b)

Fig. 1. (a) Separation of light on the focus pixel. (b) schematic diagram of
on-chip lens focus pixel sensor. The focus pixels are marked as yellow in
(a) [13].

Fig. 2. Decomposed RGB and focus pixel images from the raw image of the
focus pixel sensor for inputs [13].

B. Proposed Network Architecture

The proposed network uses a low resolution (LR) image and
focus pixel images as input and estimates a high resolution
image. The LR image and the corresponding focus pixel
images are made by bicubic downsampling of the original
RGB image and focus pixel images as described in Section
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Fig. 3. The proposed network. The network use a LR image and the corresponding focus pixel images as input and a generates HR image.

III.A. Fig. 3 shows the network architecture of the proposed
method. The proposed network includes two sub-branch nets,
LRNet and FPNet, to extract the features of the LR image
and focus pixel images independently. The features of FPNet
and LRNet are concatenated and upscaled in UPNet. Since the
resolutions of the focus pixel and LR image are different, the
process matching the resolution of two features is required for
fusion. The resolution of the LR image is set to the reference
and the features of focus pixel images are upsampled to the
reference resolution through FPNet.

Fig. 4. Structure of Dual Attention Block. It consists of two sub-branch layers
performing spatial and channel attentions.

1) Network structure: The LR image and the corresponding
focus pixel images (L1-R4) are fed into LRNet and FPNet,
respectively. LRNet is constructed with Residual convolution
block, and the feature size in LRNet does not change. FPNet is
composed of Dual Attention Block (DAB) [22], [23] and pixel-
shuffling layers [24]. FPNet performs upscaling by extracting
the features of the focus pixels. To effectively infer the lost
spatial detail from the focus pixel images which is 1/8 of the
LR image, upscaling is done incrementally in three steps with
a pixel-shuffling operation.

Fig. 4 illustrates the structure of DAB used in FPNet. DAB

conducts channel and spatial attentions in parallel. For the
spatial attention process, Global Average Pooling (GAP) and
Global Max Pooling (GMP) are operated along channel axis,
and the resulting output features are concatenated thereafter.
A convolution layer and sigmoid activation are followed. The
channel attention branch applies GAP, and a convolution layer
and sigmoid activation are followed for obtaining the attention
map. The resolution of the focus pixels is not equivalent to
the LR image, and thus the additional information provided by
the focus pixel is limited. However, DAB learns the location
and channel which are more important to find missing details
among the eight focus pixel images, through the channel and
spatial attention branches.

UPNet uses the concatenated features of FPNet and LRNet,
and generates an image with desired resolution. UPNet is
composed of residual convolution blocks and pixel-shuffling
layers.

2) Training details: For training, the L1 reconstruction loss
between the generated SR image and the groundtruth HR
image is applied, and is expressed as follows:

Lrecon =
1

N

∑
i∈Î

| Î(i)− I(i) |, (1)

where N is the number of pixels in an image patch and i is
the pixel index of the estimated SR image Î and the ground
truth image HR image I .

The dataset in this study was created for the purpose of
studying HDR imaging [13]. Many of the RGB and focus pixel
image pairs contain flat regions with no edges, which is not
appropriate for this study. In order for the proposed network
to learn the details more efficiently, we used a patch with a
mean of the sobel-filtered values greater than the threshold for
training. For optimization, Adam is used with the batch size
of 4 and the learning rate of 1× 10−4. The resolution of the
original HR image and focus pixel image is 4624 × 3456 and
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Fig. 5. Visual comparisons. The first row is the resulting images of an upscaling factor of 2, and the second and third rows are the resulting images of an
upscaling factor of 4. Note that the proposed method creates more sharp and clear details due to the fusion of the focus pixels through DAB.

TABLE I
PSNR COMPARISONS FOR REAL-WORLD DATASET

Bilinear Bicubic SISR The proposed (DAB) ResBlock 3D Conv
×2 35.803 36.562 39.827 40.667 40.335 40.199
×4 32.710 33.215 34.586 34.764 34.474 34.683

578 × 432, respectively.

IV. EXPERIMENTAL RESULT AND ABLATION STUDY

For training and evaluating the proposed method, the dataset
that contains the LR-HR image pairs and the corresponding
focus pixel images is required. We utilized the focus pixel
dataset performed in the previous HDR study [13]. For training
and test, 640 and 107 scenes are used, respectively. Evaluations
were performed on upscaling factors 2 (×2) and 4 (×4).

Several ablation studies are conducted to confirm the ef-
fectiveness of the proposed method. 1) The FPNet is re-
moved to evaluate the effect of focus pixel images, which is
equivalent to the single image SR method denoted as SISR
in Table 1. 2) DAB is replaced by Residual convolution
block and 3D convolution block. In this case, unlike DAB
in the proposed network, Residual convolution block does not
learn the channel-wise relationship, which resulted slight less
quantitative scores both in ×2 and ×4 denoted as ResBlock
in Table 1. 3) 3D convolution has been proposed for video
SR to exploit temporal features between multiple frames [25].
3D convolution extracts the features in spatial and channel
domains simultaneously, whereas DAB does it separately.

Table 1 summarizes the quantitative measure for average
PSNR scores for upscaling factors of ×2 and ×4 for the
comparison methods. The proposed network achieved the
highest PSNR scores in both x2 and x4 cases among all
comparison methods. In common, the methods using focus
pixels, the proposed, ResBlock and 3D Conv, performed better
than SISR without focus pixels, which proves that deep-
learning based methods fuses the focus pixel information to
effectively reconstruct fine details. Also, the proposed network
(using DAB) outperformed ResBlock or 3D Block in both
x2 and x4 cases, demonstrating that exploiting channel-wise
relationships with DAB finds more useful features for missing
details.

Fig. 5 illustrates the visual comparisons of the proposed
and the ablation studies for real-world images. The first row
is the resulting images of an upscaling factor of 2, and
the second and third lows are the resulting images of an
upscaling factor of 4. The red box regions of the first column
images are zoomed in for better visibility. The proposed
method consistently generates sharp images with less blurred,
compared with SISR in both x2 and x4 cases. In the case
of x4, the proposed method looks slightly compelling images
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than the ResBlock and 3D conv.

V. CONCLUSION

In this study, we proposed a new method to exploit a focus
pixel image in SR imaging. Focus pixels provide a left and
right view image by splitting light ray bidirectionally. The
parallax between the left and right pixels helps assisting auto-
focusing. Inspired by the fact that the half-divided raw pixels
are still a resource to recover high frequency details in SR
imaging, we demonstrated that these pixels are successfully
fused to an original LR image to enhance the performance SR
with the novel proposed network architecture. The quantitative
measure and visual comparison showed that the proposed
method using DAB makes the best use of focus pixels among
ablation studies.
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