
Multi-View Variational Autoencoder for Robust
Classification against Irrelevant Data

Daichi Nishikawa, Ryosuke Harakawa and Masahiro Iwahashi
Department of Electrical, Electronics and Information Engineering, Nagaoka University of Technology, Niigata, Japan

E-mail: s183155@stn.nagaokaut.ac.jp, {harakawa, iwahashi}@vos.nagaokaut.ac.jp

Abstract—Multi-view variational autoencoders (MVAEs) can
extract latent variables with high discriminative power for
classification by considering correlations among multi-view data,
i.e., multiple kinds of data. However, if we input irrelevant data,
i.e., multiple kinds of data that capture the different object, to
MVAEs, discriminative power is reduced. To solve this problem,
we propose an MVAE including a novel objective function.
Our proposed MVAE reconstructs multi-view data without the
negative effect of irrelevant data. Specifically, we derive an
objective function that focuses on latent variables of relevant
data, i.e., multiple kinds of data that capture the same object.
Experimental results show that the proposed method improved
the discriminative power of latent variables even if irrelevant
data are input.

I. INTRODUCTION

Multi-view variational autoencoders (MVAEs) [1]–[9] can
extract latent variables with high discriminative power for
classification by considering correlations among multi-view
data. In this paper, we define multiple kinds of data (a color
image that captures a digit and a grayscale image that capture
a digit) as multi-view data; discriminative power is defined
as the accuracy of the classifier constructed by using latent
variables via MVAEs. Methods presented in previous work [1],
[6] can extract latent variables by learning the bi-directional
generation process between multi-view data. Methods in pre-
vious work [4], [5] enabled the extraction of latent variables
even if some data are missing. Schonfeld et al. [8] intro-
duced distribution alignment and cross alignment objective
functions into an MVAE for zero-shot learning. Hwang et
al. [7] proposed an objective function for decomposing latent
variables into two types, shared and exclusive representations.
Thus, we can extract disentangled latent variables for domain-
invariant and domain-specific representations. Methods in pre-
vious work [2], [9] introduced labels into an MVAE. This
improves the discriminative power of latent variables. Huang
et al. [3] introduced graph embedding into an MVAE. This idea
enabled graph embedding considering the correlation among
multi-view data for social media contents.

Multi-view data can be divided into relevant data and
irrelevant data. In this paper, we define multiple kinds of data
that capture the same object as relevant data, and those that
capture the different object as irrelevant data. Conventional
methods [1]–[9] do not assume that irrelevant data are input.
Therefore, in the training phase, MVAEs learn to reconstruct
only relevant data. (see Fig. 1 (a)). As a result, if irrelevant
data are input to MVAEs in the test phase, latent variables
to reconstruct irrelevant data are calculated. This reduces the

discriminative power of the latent variables. Even if we assume
that irrelevant data are input to MVAEs (see Fig. 1 (b)),
MVAEs extract latent variables that reconstruct irrelevant data,
and discriminative power of latent variables is reduced in the
test phase.

In this paper, we propose an MVAE including a novel
objective function that extracts latent variables with high dis-
criminative power even if irrelevant data are input. Specifically,
we focus on conventional methods to reconstruct the original
input data in the training phase, and derive an objective
function that reconstructs relevant data from irrelevant data in
the training phase (see Fig. 1 (c)). As a result, even if irrelevant
data are input in the test phase, latent variables focused on
relevant data are extracted and, the negative effect of irrelevant
data on the latent variable is reduced. Experimental results for
MNIST [10] and SVHN [11] datasets show the effectiveness
of our MVAE.

II. PROBLEM OF CONVENTIONAL OBJECTIVE FUNCTION

In this section, we describe the problem of conventional
objective functions [1]–[9]. Original variational autoencoder
(VAE) [12] is a probabilistic variant of the traditional autoen-
coder. The important characteristic is that it assumes that latent
variables follow a prior distribution. The VAE assumes that
high-dimensional data can be represented by low-dimensional
latent variables z that follow a certain prior distribution. The
dimension of the input data is compressed by an encoder, and
then the compressed data is reconstructed to the original input
data by a decoder. This process allows the VAE to extract the
latent variables z with high discriminative power. MVAEs are
based on the VAE and take multi-view data as input. MVAEs
extract latent variables that capture the characteristics shared
by multi-view data. The objective function of MVAEs is a
variational lower bound L(θ, ϕ;x1:M ) on the log-likelihood
log pθ(x1:M ):

log pθ(x1:M ) = log

∫
pθ(x1:M , z)dz

= log

∫
qϕ(z|x1:M )

pθ(x1:M , z)

qϕ(z|x1:M )
dz

≥
∫

qϕ(z|x1:M ) log
pθ(x1:M , z)

qϕ(z|x1:M )
dz

= Ez∼qϕ(z|x1:M )

[
log

pθ(x1:M , z)

qϕ(z|x1:M )

]
= L(θ, ϕ;x1:M ), (1)
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Fig. 1. Reconstruction process of the conventional method and the proposed method in the training phase. (a) Conventional methods with only relevant data.
(b) Conventional methods with irrelevant data. (c) Our MVAE that reconstructs relevant data from irrelevant data.

where θ is generative model parameter, x1:M are input multi-
view data and z is a latent variable. qϕ(z|x1:M ) is the
posterior distribution approximated by an encoder that takes
the true posterior distribution pθ(z|x1:M ) as its parameter
ϕ. Conventional methods [1]–[9] derive original objective
functions on the basis of L(θ, ϕ;x1:M ).

However, the objective function L(θ, ϕ;x1:M ) has a prob-
lem. Specifically, it assumes that only relevant data are input to
the MVAEs [1]–[9]. If irrelevant data are input to the MVAEs,
latent variables are extracted to reconstruct irrelevant data. As
a result, the discriminative power is reduced.

III. NOVEL OBJECTIVE FUNCTION ROBUST AGAINST
IRRELEVANT DATA

We propose a novel objective function that assumes that
irrelevant data are input to an MVAE in the training phase.
Similar to the conventional method, the proposed method
considers the log-likelihood log pθ(x

R
1:M ) of relevant data

xR
1:M , which consist of M data, to be marginalized by a latent

variable z.

log pθ(x
R
1:M ) = log

∫
pθ(x

R
1:M , z)dz. (2)

In the conventional objective function, the true posterior prob-
ability pθ(z|xR

1:M ) for relevant data is approximated by the
encoder qϕ(z|xR

1:M ). Therefore, if irrelevant data are input
to MVAEs, latent variables that reconstruct irrelevant data
are extracted in the training phase. In the proposed method,
we assume that the true posterior probability pθ(z|xR

1:M ) for
relevant data is approximated by the encoder qϕ(z|x1:M ) for
irrelevant data x1:M as follows.

log pθ(x
R
1:M ) = log

∫
qϕ(z|x1:M )

pθ(x
R
1:M , z)

qϕ(z|x1:M )
dz

≥
∫

qϕ(z|x1:M ) log
pθ(x

R
1:M , z)

qϕ(z|x1:M )
dz

= Ez∼qϕ(z|x1:M )

[
log

pθ(x
R
1:M , z)

qϕ(z|x1:M )

]
. (3)

The conventional objective function [1] improves the discrimi-
native power of latent variables by using Importance Weighted

Fig. 2. Architecture of the proposed method (M = 2). Orange arrows
represent the reconstruction process from x1. Green arrows represent the
reconstruction process from x2.

Autoencoder (IWAE) [13] and mixture-of-experts [14]. Mo-
tivated by this fact, we propose a novel objective function
Lp(Θ,Φ;xR

1:M ,x1:M ) based on Eq. (3).

Lp(Θ,Φ;xR
1:M ,x1:M )

=
1

M

M∑
m=1

Ez1:K
m ∼qϕm (z|xm)

[
log

1

K

K∑
k=1

pΘ(xR
1:M ,zk

m)

qΦ(zk
m|x1:M )

]
, (4)

where Θ is all generative model parameters, Φ is all encoder
parameters, ϕm is m-th encoder parameter, xm is each of
input multi-view data, and K is the number of samples for
the Monte Carlo method in IWAE. This objective function
allows us to learn latent variables focusing on relevant data
rather than irrelevant data. The proposed objective function is
optimized using AMSGrad [15]. The proposed method utilizes
the same architecture as MMVAE [1] (see Fig. 2), which can
extract highly discriminative latent variables. In the proposed
method, the architecture is defined depending on the input data
(see Sec. IV-A).

IV. EXPERIMENTAL RESULTS

In this experiment, we show that the proposed MVAE
(Ours) has high discriminative power even if irrelevant data
are input. Specifically, we constructed Support Vector Machine
(SVM) [16] using the latent variables calculated by Ours
and verify their discrimination accuracy. We assumed that
irrelevant data is caused by pairing with mislabeled data,
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referring to previous studies [17]–[21]. In other words, when
we paired with mislabeled data, we evaluate the discrimination
accuracy of SVM.

A. Conditions
The following two methods are used as comparative meth-

ods.
CM1: MMVAE [1] using only relevant data in the training

phase.
CM2: MMVAE using irrelevant data in the training phase.

In this experiment, we used the pair of the Modified
National Institute of Standards and Technology database
(MNIST) [10] (consisting of grayscale handwritten numeric
images) and the Street View House Numbers database
(SVHN) [11] (consisting of color images of house numbers ob-
tained from Google Street View1) as multi-view data. First, we
prepared a training dataset without irrelevant data. Specifically,
we randomly selected images with the same digit class from
60,000 MNIST training images and 73,257 SVHN training
images and prepared multi-view data by pairing with these
images. By this process, we prepared 135,000 multi-view data
for each digit class (the digits 0-9) (1,350,000 in total).

Next, we prepared a test dataset including both relevant data
and irrelevant data as follows:

Step 1 Similar to the training dataset, we prepared 25,500
multi-view data for each class (255,000 in total) by
randomly selecting and pairing with the same digit
classes from 10,000 MNIST test images and 26,032
SVHN test images.

Step 2 We randomly selected data from the digit classes
according to the transition matrices shown in Fig. 3.
For example, we randomly selected 30% from
MNIST images of digit classes 2, 3, 5, and 8 from
the test dataset.

Step 3 According to the transition matrices shown in Fig. 3,
we randomly rewrote the image selected in Step 2
For example, we rewrote the MNIST images of
“class 2” selected in Step 2 to images of “class 3”.

Finally, we used the irrelevant data for training of CM2 and
Ours. Therefore, we prepared training dataset x1:M and xR

1:M

of CM2 and Ours in the same manner as Step 2 and Step 3.
Note that CM1 is trained to reconstruct only relevant data,
as shown in Fig. 1 (a). CM2 is trained to reconstruct both
relevant data and irrelevant data, as shown in Fig. 1 (b). Ours
is trained to reconstruct relevant data from irrelevant data, as
shown in Fig. 1 (c).

In this experiment, the architecture of MMVAE [1] was
adopted for CM1, CM2, and Ours. The details of the archi-
tecture are shown in Tables I and II. For all methods, the batch
size, the number of training sessions, K, and the learning rate
were set to 128, 30 epochs, 30, and 0.001, respectively.

We used the linear SVM [16] classifier to evaluate the
performance of all methods. Specifically, we prepared two
SVMs for CM1, CM2, and Ours because the MVAEs of these

1https://www.google.co.jp/maps

TABLE I
ARCHITECTURE OF THE ENCODER AND DECODER FOR MNIST. FC. IS A

FULLY CONNECTED LAYER. L IS THE NUMBER OF DIMENSIONS OF
LATENT VARIABLES.

Encoder Decoder
Input∈ R1×28×28 Input ∈ RL

FC. 400 ReLU [22] FC. 400 ReLU
FC. L, FC. L FC. 1×28×28 Sigmoid [23]

TABLE II
ARCHITECTURE OF THE ENCODER AND DECODER FOR SVHN. conv. IS A

CONVOLUTION LAYER. pad. IS A PADDING PROCESSING. upconv. IS A
DECONVOLUTION LAYER.

Encoder
Input∈ R3×32×32

4×4 conv. 32 stride 2 pad. 1 & ReLU
4×4 conv. 64 stride 2 pad. 1 & ReLU
4×4 conv. 128 stride 2 pad. 1 & ReLU
4×4 conv. L stride 1 pad. 0, 4×4 conv. L stride 1 pad. 0
Decoder
Input∈ RL

4×4 upconv. 128 stride 1 pad. 0 & ReLU
4×4 upconv. 64 stride 2 pad. 1 & ReLU
4×4 upconv. 32 stride 2 pad. 1 & ReLU
4×4 upconv. 3 stride 2 pad. 1 & Sigmoid

methods extracts two latent variables from multi-view data.
The first SVM was trained by 27,000 latent variables extracted
from MNIST. The second SVM was trained by 27,000 latent
variables extracted from SVHN. We calculated the average of
the prediction probabilities [24] from the two SVMs for the
test dataset and defined the class with the highest probability
as the discrimination result.

B. Results

Table III shows the accuracy of classification by SVM. This
table confirms that Ours is 8% more accurate than CM1
and CM2 on average. For the classes containing irrelevant
data (classes 0, 1, 2, 3, 5, 7, 8, and 9), we can confirm that
the accuracy is improved by 10% compared with CM1 and
CM2. These results show that CM2 is robust against SVHN
mislabeled images, but vulnerable against MNIST mislabeled
images. This means that conventional MVAE is not robust
against irrelevant data, because it learns latent variables to
reconstruct irrelevant data.

Figures 4 and 5 show the reconstruction results of irrelevant
data. Figure 4 shows that Ours can reconstruct the SVHN
image to MNIST image more accurately than CM1 and CM2.
Figure 5 shows that Ours does not reconstruct the SVHN
image as well as CM1 and CM2. This confirms that Ours
does not learn latent variables to reconstruct the mislabeled
SVHN.

Figure 6 shows the confusion matrix that represents the
relationship between ground truths and prediction results for
each digit class. CM1 is accurate for classes 4 and 6, which
do not contain irrelevant data. On the contrary, for classes
0, 1, 2, 3, 5, 7, 8, and 9, which contain irrelevant data,
the discriminative power of latent variables is reduced due
to the negative effect of irrelevant data. CM2 extracted the
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Fig. 3. Transition matrices of MNIST and SVHN.

Fig. 4. Reconstruction of irrelevant data including MNIST mislabeled image
of CM1, CM2 and Ours.

Fig. 5. Reconstruction of irrelevant data including SVHN mislabeled image
of CM1, CM2 and Ours.

discriminative power of latent variables in classes 0, 1, 7, and
9 compared with CM1. However, for classes 2, 3, 5, and 8,
the discriminative power of latent variables is reduced in CM2
compared with CM1. On the other hand, Ours extracts latent
variables that are more discriminative than CM1 and CM2 in
each digit class containing irrelevant data.

V. CONCLUSION

Conventional MVAE is designed based on the assumption
that only the relevant data are input. This assumption causes

TABLE III
ACCURACY OF CM1, CM2 AND OURS. CLASSES 0, 1, 2, 3, 5, 7, 8 AND 9

INCLUDE IRRELEVANT DATA. CLASSES 4 AND 6 DO NOT INCLUDE
IRRELEVANT DATA.

Method CM1 CM2 Ours
Classes 0, 1, 2, 3, 5, 7, 8 and 9 0.810 0.811 0.916

Classes 4 and 6 0.972 0.982 0.978
Average 0.843 0.846 0.928

the problem that the discriminative power of latent variables
is reduced when irrelevant data are input. To solve this
problem, we proposed MVAE including a novel objective
function. Specifically, we derived an objective function that
reconstructs relevant data from irrelevant data in the training
phase. Experimental results show that our proposed method
improved the discriminative power of latent variables even if
irrelevant data are input.
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