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Abstract—In this paper, we consider the signal detection
problem of overloaded massive multi-user multi-input multi-
output (MU-MIMO) orthogonal frequency division multiplex-
ing (OFDM) and single carrier block transmission with cyclic
prefix (SC-CP) systems. For the systems, we employ iterative
weighted sum of complex sparse regularizers with group sparsity
(IWSCSR-GS) optimization, which is a complex discrete-valued
vector reconstruction method that uses discreteness of symbols to
estimate unknown vectors, and propose a signal reconstruction
method using piecewise continuous nonconvex sparse regular-
izers, such as smoothly clipped absolute deviation (SCAD) or
minimax concave penalty (MCP), in the optimization problem.
Computer simulation results demonstrate that the proposed
signal reconstruction method with MCP achieves better symbol
error rate (SER) performance than that of not only IWSCSR-GS
with ℓ1 norm but also that with ℓp norm (p = 0, 1/2, 2/3) or
ℓ1 − ℓ2 difference, which are nonconvex sparse regularizers, and
the proposed signal reconstruction method with SCAD achieves
the best performance among the methods for large systems with
high signal-to-noise ratio (SNR) region.

I. INTRODUCTION

With the advent of the 5th generation mobile communica-
tions system (5G), the requirement for simultaneous connec-
tions of massive terminals has become an important aspect
of wireless communications. This requirement is expected to
accelerate as wireless systems evolve toward the next gen-
eration, i.e., 6G [1]–[3]．One of the technologies supporting
such systems is massive multi-user multi-input multi-output
(MU-MIMO), because the data collection from a large number
of internet-of-things (IoT) terminals at a base station with
multiple antennas can be modeled by the MU-MIMO system.
In common MIMO systems, including massive MU-MIMO
systems, the number of transmit antennas (streams) is assumed
to be less than or equal to that of receive antennas. However,
in typical IoT environments, the number of transmit terminals
could be greater than that of receive antennas even when
a massive antenna array is employed at the base station.
Therefore, it is difficult to apply conventional MIMO signal
detection methods in such environments.

MIMO communications where the number of transmit
streams is greater than that of receive antennas are called

overloaded MIMO, and the signal detection problem in such
cases is very difficult because it is underdetermined. Max-
imum likelihood (ML) approach can obtain the estimate of
the transmitted signals if a finite alphabet is used for the
transmitted symbols as in digital communications [4], but
the ML approach is prohibitively computationally expensive
and infeasible for massive overloaded MIMO communications.
Therefore, we have proposed a low computational complexity
MIMO signal detection scheme [5] using convex optimization,
where sum-of-absolute-values (SOAV) optimization [6], which
is based on the idea of compressed sensing [7], [8], is
employed. Moreover, by extending the method from the real
domain to the complex domain, we have proposed a sparse
complex discrete-valued vector reconstruction method named
sum of complex sparse regularizers (SCSR) optimization [9] in
[10]. Furthermore, noting that when orthogonal frequency divi-
sion multiplexing (OFDM) or single carrier block transmission
with cyclic prefix (SC-CP) is used in the IoT environments,
the signals to be estimated have not only the discreteness
but also the group sparsity, we have proposed SCSR with
group sparsity (SCSR-GS) [11], which can take group sparsity
into consideration. In addition, we have extended the SCSR-
GS optimization into an iterative approach named iterative
weighted SCSR-GS (IWSCSR-GS) [11], where we iteratively
solve the SCSR-GS optimization problem with updating the
parameters in the objective function. Most recently, in [11], we
have improved the signal detection performance of IWSCSR-
GS by using nonconvex sparse regularization function, such
as ℓp norm (p = 0, 1/2, 2/3) and ℓ1 − ℓ2 difference, for the
discrete regularization.

In this paper, in order to further improve the performance
of IWSCSR-GS, we focus on smoothly clipped absolute de-
viation (SCAD) and minimax concave penalty (MCP), which
are nonconvex sparse regularization functions that have been
shown to have better performance than ℓ1 norm regularization
[12] for compressed sensing, and propose a method to use
them for discrete regularizers in IWSCSR-GS. These regu-
larizers are piecewise continuous nonconvex functions whose
behavior depends on several variables, which we call the
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nonconvexity parameters. They include ℓ1 norm regularization
as a special case when they are set as infinity. The proximal op-
erators of the regularizers can be computed in real space, and
we use them in the alternating direction method of multipliers
(ADMM) [13]，[14] based algorithm to solve IWSCSR-GS
optimization problem. Computer simulation results show that
the proposed IWSCSR-GS with MCP gives better symbol error
rate (SER) performance than our conventional method with ℓp
norm (p = 0, 1, 1/2, 2/3) or ℓ1 − ℓ2 difference and that with
SCAD achieves the best performance among the methods for
large systems with high signal-to-noise ratio (SNR) region.

In the rest of the paper, the following notations are used. R
is the set of all real numbers and C is the set of all complex
numbers. Let 0Q and 1Q denote a vector of size Q with all 0
elements and with all 1 elements, respectively. (·)T and (·)H
are the transpose and Hermitian transpose, respectively. IN
is an identity matrix of size N × N . For a complex vector
u = [u1 · · ·uN ]T ∈ CN and an operator f(·) : CN → CN ,
[f(u)]n and un represent the n-th components of f(u) and
u, respectively. The proximal operator of a convex function
ϕ(·) : CN → R is defined as

proxϕ(u) = arg min
s∈CN

{
ϕ(s) +

1

2
∥s− u∥22

}
. (1)

Note that we use this definition formally even when ϕ(·) is a
nonconvex function.

II. SYSTEM MODEL

Here, we describe the system model considered in this
paper. Fig. 1 shows the system model of the uplink commu-
nications in the IoT environments, which is modeled as MU-
MIMO OFDM or SC-CP system. The number of antennas
at the base station, the number of IoT terminals and the
block length are denoted as M , N , and Q, respectively. The
frequency domain received signal model of the precoded MU-
MIMO OFDM system can be written as r1

...
rM

 =

Λ(1,1)P · · · Λ(1,N)P
...

...
Λ(M,1)P · · · Λ(M,N)P


s1

...
sN

+

 v1

...
vM

 , (2)

where rm ∈ CQ (m = 1, . . . ,M) is the received signal block
in the frequency domain at the m-th antenna of the base station
and sn ∈ CQ (n = 1, . . . , N) is the transmitted signal block
of the n-th IoT terminal. vm ∈ CQ is the additive white
Gaussian noise in the frequency domain at the m-th antenna
of the base station with mean of 0Q and covariance matrix
of σ2

vIQ. The elements of the frequency domain diagonal
channel matrix Λ(m,n) = diag(λ

(m,n)
1 , . . . , λ

(m,n)
Q ) ∈ CQ×Q

between the n-th IoT terminal and the m-th receiving antenna
of the base station can be obtained by the discrete Fourier
transform (DFT) of the L-path channel impulse response of
{h(m,n)

1 , . . . , h
(m,n)
L } as
λ
(m,n)
1

...
λ
(m,n)
Q

 =
√

QD


h
(m,n)
1

...
h
(m,n)
L

0Q−L

 , (3)

Fig. 1: Uplink MU-MIMO OFDM/SC-CP system model for base
station and IoT terminals

where D is a Q-point unitary DFT matrix. P ∈ CQ×Q

represents the precoding matrix, which is common to all
terminals. When P has an arbitrary structure, (2) is a received
signal model of precoded MU-MIMO OFDM. On the other
hand, when we set P = D, it results in the received signal
model of non-precoded MU-MIMO SC-CP [10], [15]. We
assume that Nact IoT terminals out of N terminals are active.
While N −Nact nonactive terminals actually keep silent, we
can regard they transmit all zero signal block of 0Q.

We define r = [rT1 · · · rTM ]T ∈ CQM and s =
[sT1 · · · sTN ]T ∈ CQN , then (2) can be rewritten in a simpler
form as

r = As+ v, (4)

where A ∈ CQM×QN is the whole channel matrix defined as

A =

Λ(1,1)P · · · Λ(1,N)P
...

...
Λ(M,1)P · · · Λ(M,N)P

 , (5)

and v = [vT
1 · · ·vT

M ]T ∈ CQM .

III. IWSCSR-GS OPTIMIZATION PROBLEM

In this section, we present SCSR-GS optimization prob-
lem, which is a complex discrete-valued vector reconstruction
method, and IWSCSR-GS optimization [11], which can im-
prove the detection performance by interatively adjusting the
weights in the optimization problem.

Let S = {c1, . . . , cS} be alphabet of the unknown signal.
If we employ QPSK, we have S = 5 including the symbol of
0 and {c1, . . . , c5} = {0, 1 + j,−1 + j, 1 − j,−1 − j}. The
probability distribution of the elements of the unknown vector
x ∈ CQN is defined by

Pr(xi = cℓ) = pℓ (ℓ = 1, . . . , S, i = 1, . . . , QN), (6)

where
∑S

ℓ=1 pℓ = 1. The SCSR-GS optimization problem
[10], [11] is given by

min
x∈CQN

S∑
ℓ=1

qℓgℓ(x− cℓ1QN ) + α

N∑
n=1

∥xn∥2

subject to ∥r −Ax∥2 ≤ ϵ, (7)
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where α, ϵ > 0, and qℓ ≥ 0 (ℓ = 1, . . . , S) satisfies∑S
ℓ=1 qℓ = 1. The vector xn ∈ CQ is the n-th subvector

of x = [xT
1 · · ·xT

N ] ∈ CQN . The function gℓ(·) is a sparse
regularization function, where we assume that its proximal
operator is easy to compute. In [10] and [11], the ℓp norm
(p = 0, 1, 1/2, 2/3) or ℓ1 − ℓ2 difference based functions
have been employed as the function gℓ(·). The first term in
the optimization problem (7) can be considered as a discrete
regularizer for x ∈ CQN , which uses the fact that x−cℓ1QN is
a sparse vector. The second term promotes the group sparsity
of the solution. We adopt the ℓ2 norm for this term, which is
defined as

∥xn∥2 =

√√√√ Q∑
i=1

|xn,i|2 (8)

for a complex vector xn = [xn,1 · · ·xn,Q]
T ∈ CQ.

In order to take the prior distribution of unknown vectors
into consideration, we have introduced weights for each sym-
bol xi in the SCSR-GS, and the resultant optimization problem
is given by

min
x∈CQN

S∑
ℓ=1

QN∑
i=1

qi,ℓgℓ(xi − cℓ) +

N∑
n=1

αn∥xn∥2

subject to ∥r −Ax∥2 ≤ ϵ, (9)

where qi,ℓ ≥ 0 and αn > 0 satisfy
∑S

ℓ=1 qi,ℓ = 1 for
any i = 1, . . . , QN and

∑N
n=1 αn = Nα, respectively. The

weights qi,ℓ and αn are determined according to the prior
distribution of each symbol. It is true that we usually have
no prior information on the distribution, and thus we have to
use uniform distribution for the weights, which results in no
performance gain against SCSR-GS. However, if we employ
an iterative approach, we can obtain the prior distribution from
the tentative estimate of the unknown vector in the previous
iteration as in the case with the turbo signal processing, and
use the distribution to update the weights in the optimization
problem (9), which leads to performance improvement. We
call this iterative solution for the optimization problem of (9)
as IWSCSR-GS [11].

IV. PROPOSED METHOD

In this section, we propose IWSCSR-GS with SCAD or
MCP, which are piecewise continuous nonconvex sparse reg-
ularizers. Specifically, we consider to use SCAD or MCP for
gℓ(·) in the first discrete regularization term of (9) to improve
the reconstruction performance of IWSCSR-GS.

Let a real vector be t ∈ RN , then, SCAD [16] is defined as

fSCAD(tn; γ, a) =


γ|tn| (|tn| ≤ γ)

− t2n−2aγ|tn|+γ2

2(a−1) (γ < |tn| ≤ aγ)
(a+1)γ2

2 (|tn| > aγ),
(10)

and MCP [17] is defined as

fMCP(tn; γ, a) =

{
γ|tn| − t2n

2a (|tn| ≤ aγ)
aγ2

2 (|tn| > aγ),
(11)

Fig. 2: Proximal operators for nonconvex regularizers (γ = 1, a =
3)

where γ ∈ (0,∞) and a ∈ (1,∞) are the nonconvexity
parameters, which determine the properties of SCAD and
MCP. It should be noted that both SCAD and MCP include
ℓ1 norm regularization as a special case where a of (10) and
(11) goes to infinity. From (1), proximal operators for SCAD
and MCP can be respectively calculated as[

proxγfSCAD(t)
]
n

=


tn − sgn(tn)γ for 2γ ≥ |tn| > γ
a−1
a−2 (tn − sgn(tn)

aγ
a−1 ) for aγ ≥ |tn| > 2γ

tn for |tn| > aγ

0 otherwise

(12)
and [

proxγfMCP(t)
]
n

=


a

a−1 (tn − sgn(tn)γ) for aγ ≥ |tn| > γ

tn for |tn| > aγ

0 otherwise,

(13)

where sgn(tn) is the sign of tn. Fig. 2 shows examples of
the proximal operators for SCAD, MCP and ℓp norm, which
is studied in [18]–[20]. The figure shows that the proximal
operators for ℓp norm functions (p = 0, 1/2, 2/3) are discon-
tinuous, while those for SCAD and MCP are continuous.

In accordance with [9] and [21], we can employ two forms
of gℓ(·) of (9) given by

g
(·)
⋆ (u) = f (·)(|u|), (14)

g
(·)
⋆⋆ (u) = f (·)(Re(u)) + f (·)(Im(u)), (15)

where u = [u1, . . . , uN ]T ∈ CN and f (·) denotes the
regularization function in real space. As a result of the
investigations in [9], [21], we have found that g

(·)
⋆ should
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Algorithm 1 IWSCSR-GS

Input: r ∈ CQM ,A ∈ CQM×QN

Output: ŝ ∈ CQN

1: Initialize qi,ℓ = qℓ (i = 1, . . . , QN, ℓ = 1, . . . , S), αn =
α (n = 1, . . . , N)

2: for t = 1 to T do
3: Fix α, ρ > 0, z0

1 , . . . , z
0
S , zGS, w0

1, . . . ,w
o
S , w0

GS ∈
CQN , z0

B, w0
B ∈ CQM

4: for k = 0 to K − 1 do
5: xk+1 =

(
(S + 1)IQN +AHA

)−1

6: ·
(∑S

ℓ=1(z
k
ℓ −wk

ℓ ) + (zk
GS −wk

GS)

7: +AH(zk
B −wk

B)
)

8: yk+1
ℓ = xk+1 +wk

ℓ (ℓ = 1, . . . , S)
9: yk+1

GS = xk+1 +wk
GS

10: yk+1
B = Axk+1 +wk

B

11: zk+1
i,ℓ = cℓ + prox qi,ℓ

2ρ gℓ
(yk+1

i,ℓ − cℓ) (i =

1, . . . , QN, ℓ = 1, . . . , S)

12: zk+1
GS,n =

[
proxαn

2ρ gGS,n
(yk+1

GS )
]
n

(n = 1, . . . , N)

13: zk+1
B = prox 1

2ρχB
(yk+1

B )

14: wk+1
ℓ = yk+1

ℓ − zk+1
ℓ (ℓ = 1, . . . , S)

15: wk+1
GS = yk+1

GS − zk+1
GS

16: wk+1
B = yk+1

B − zk+1
B

17: end for
18: qi,ℓ =

|xK
i −cℓ|−1∑S

ℓ′=1|xK
i −cℓ′ |−1 (i = 1, . . . , QN, ℓ =

1, . . . , S)

19: αn =
∥xK

n ∥−1

2∑N
n′=1∥xK

n′∥−1

2

Nα (n = 1, . . . , N)

20: end for
21: ŝ = xK

be used corresponding to symbol 0 and g
(·)
⋆⋆ should be used

corresponding to other symbols due to the fact that the real and
imaginary parts of the symbol 0 are 0 at the same time, and
this paper also follows. The proximal operators in complex
space can be written in terms of the corresponding proximal
operator in real space as[

prox
γg

(·)
⋆
(u)

]
n
=
[
proxγf(·)(|u|)

]
n

un

|un|
, (16)[

prox
γg

(·)
⋆⋆
(u)

]
n
=
[
proxγf(·)(Re(u))

]
n

+ j
[
proxγf(·)(Im(u))

]
n
. (17)

Using these proximity operators, the ADMM based al-
gorithms to solve SCSR-GS optimization and IWSCSR-GS
optimization are shown in Algorithm 1, where ρ > 0, K is
the number of iterations of the algorithm and T is the total
number of iterations. Note that, when T = 1, IWSCSR-GS is
the same as SCSR-GS. The function gGS,n(·) in the algorithms
is the regularization function corresponding to the second term
of (9), which accounts for group sparsity, and we employ
gGS,n(z) = ∥zn∥2. The indicator function χB(z) = χB(Ax)

corresponds to the constraint in (9) and is given by

χB(z) =

{
0 if z ∈ B
∞ if z /∈ B,

(18)

where B = {u ∈ CQN : ∥r − u∥2 ≤ ϵ}, in accordance with
[11]. In Algorithm 1, we employ the weight update equations
as in [10],

qi,ℓ =
|x̂i − cℓ|−1∑S

ℓ′=1 |x̂i − cℓ′ |−1
(19)

and

αn =
∥x̂n∥−1

2∑N
n′=1 ∥x̂n′∥−1

2

Nα, (20)

where we define x̂ = [x̂1, . . . , x̂N ]
T

= [x̂1, . . . , x̂QN ]
T ∈

CQN as the estimate of s at the previous iteration.

V. NUMERICAL RESULTS

The signal detection performance of the proposed method
is evaluated by the SER via computer simulations. The mod-
ulation scheme is QPSK, and the communication channels
are assumed to be 10-path frequency selective channels. The
block length is set to be Q = 64 and all delayed signals
are assumed to be within the cyclic prefix. Hadamard matrix
is used for the MU-MIMO OFDM precoding matrix P . In
order to evaluate the performance of different system size,
we have set the number of antennas at the base station M ,
the number of IoT terminals N , and the number of active
IoT terminals Nact to be (M,N,Nact) = (6, 8, 7) for a small
system and (M,N,Nact) = (60, 80, 70) for a large system,
which correspond to the overloaded factor of N/M = 1.33 in
both cases. In these cases, the initial values of the weights are
set to (q1, q2, q3, q4, q5) = (N−Nact

N , Nact

4N , Nact

4N , Nact

4N , Nact

4N ) =
(1/8, 7/32, 7/32, 7/32, 7/32)．The parameter ρ, the weight
α, and the nonconvexity parameter a are set to be the best
values for each methods in the trials. For comparison purpose,
we have also evaluated the performance of IWSCSR-GS with
ℓp norm (p = 0, 1, 1/2, 2/3) or ℓ1 − ℓ2 difference [22] and
the performance of iterative weighted SCSR (IWSCSR) [9]
with ℓ1 norm, which is a naive reconstruction method without
using group sparsity, in the simulations.

Figs. 3–6 show the SER performance of IWSCSR-GS
versus Eb/N0 (energy per bit to noise power spectral density
ratio) for MU-MIMO OFDM. Figs. 3 and 4 show the results
with the small system for T = 1 and 5 in the proposed
algorithm, respectively, and Figs. 5 and 6 show the results
with the large system for T = 1 and 5, respectively. In the
case of the small system, the SER performance of the proposed
IWSCSR-GS with SCAD is worse than or comparable to
that of IWSCSR-GS with ℓ0 norm, however in the case
of the large system, the SER performance of IWSCSR-GS
with SCAD exceeds that of IWSCSR-GS with ℓ0 norm at
Eb/N0 = 15 dB and that of IWSCSR-GS with SCAD achieves
the best at Eb/N0 = 15 dB for T = 5. On the other
hand, the proposed IWSCSR-GS with MCP has comparable
performance to IWSCSR-GS with ℓ1/2 norm, which has the
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Fig. 3: SER performance (OFDM with precoding, M = 6, N =
8, Nact = 7, T = 1)

Fig. 4: SER performance (OFDM with precoding, M = 6, N =
8, Nact = 7, T = 5)

best performance among the existing methods, in the case
of the small system, and furthermore, it achieves the best
performance in the case of the large system except for the
result of IWSCSR-GS with SCAD at Eb/N0 = 15 dB for
T = 5.

Figs. 7–10 show the SER performance of IWSCSR-GS
versus Eb/N0 for MU-MIMO SC-CP. Figs. 7 and 8 show
the results with the small system for T = 1 and 5 in
the proposed algorithm, respectively, and Figs. 9 and 10
show the results with the large system for T = 1 and 5,
respectively. As is the case of MU-MIMO OFDM, we can
see that the proposed IWSCSR-GS with SCAD has worse
performance than or comparable performance to IWSCSR-
GS with ℓ0 norm for the small system and it achieves the
best performance for the large system at Eb/N0 = 15 dB for
T = 5. Similarly, the proposed IWSCSR-GS with MCP has
comparable performance to IWSCSR-GS with ℓ1/2 norm for

Fig. 5: SER performance (OFDM with precoding, M = 60, N =
80, Nact = 70, T = 1)

Fig. 6: SER performance (OFDM with precoding, M = 60, N =
80, Nact = 70, T = 5)

the small system, and it achieves the best performance for the
large system except for the performance of IWSCSR-GS with
SCAD at Eb/N0 = 15 dB for T = 5.

From Figs. 3–10, we can see that as the discrete regularizer
in IWSCSR-GS, SCAD is suitable for large systems with high
Eb/N0 regions, and MCP is the best choice for both small and
large systems.

VI. CONCLUSIONS

In this paper, we have considered an uplink overloaded MU-
MIMO OFDM/SC-CP signal detection method using piece-
wise continuous nonconvex sparse regularizers, such as SCAD
and MCP. Computer simulation results show that the proposed
IWSCSR-GS with MCP achieves better SER performance
than IWSCSR-GS with ℓp norm (p = 0, 1, 1/2, 2/3) or
ℓ1 − ℓ2 difference and that with SCAD achieves the best
performance for large systems with high Eb/N0 region. Future
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Fig. 7: SER performance (SC-CP without precoding, M = 6, N =
8, Nact = 7, T = 1)

Fig. 8: SER performance (SC-CP without precoding, M = 6, N =
8, Nact = 7, T = 5)

work includes detailed optimization of the parameters in the
proposed algorithm and further investigation of the iterative
signal detection including decoding of error correcting codes.
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