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Abstract—Wireless connectivity plays a crucial role in col-
lecting data from a large number of devices and sensors for
various Internet-of-Things (IoT) applications including supply
chain management and personalized healthcare. In most IoT
applications, for various reasons, a collected data set may
include incorrect or corrupted data samples, which should be
detected and removed. For example, malicious devices may send
fake information or malfunctioned remote devices can respond
improperly. In this paper, we study anomaly detection for wireless
links, not data sets sent by devices, to see any anomalies in the
physical and link layers associated with connected devices to a
network. The resulting approach can be viewed as preemptive
anomaly detection and be part of causal anomaly discovery that
helps determine whether anomalies detected in a data set are
caused by errors in wireless links or transceivers.

I. INTRODUCTION

In the Internet-of-Things (IoT), a large number of devices
including sensors and actuators are to be connected to the
Internet for diverse applications including smart cities and
factories [1] [2]. To allow devices to be connected, wireless
connectivity plays a crucial role in the IoT and a number of
solutions are studied [3]. Furthermore, non-terrestrial networks
(NTN) will be to be part of IoT networks [4].

Anomaly detection is to detect samples that differ from
most of the data or deviate from some form of normality,
and has a wide range of applications such as fraud detection,
intrusion detection, fault diagnosis, and so on [5] [6]. As with
diverse applications, various approaches to anomaly detection
have been studied, and some of classical approaches are well
summarized in [6]. Deep learning is also applied to anomaly
detection [7] [8].

As mentioned earlier, a number of IoT applications need
to process data collected from a large number of devices
[9] through wireless connectivity, which may cause various
issues. Remote devices may malfunction and send partial or
wrong information, which may feed to certain applications and
result in undesirable outcomes. There can also be malicious
devices that perform impersonation attacks by sending fake
information. While any malicious behaviors of certain devices
could be detected in application domains through data samples
collected from them, it is also possible to detect them using
radio frequency (RF) fingerprinting and mobility profiles [10].
As a result, in terms of a layered model for IoT systems [11],
anomaly detection can take place on any layer.

In this paper, we study anomaly detection for wireless links
using typical parameters in the physical and link layers using
deep learning [12]. As an example, we consider satellite links.
A set of parameters that are used to configure the physical and
link layers becomes a data sample to train a model. The notion
of data integrity modeling is adopted to train the model as a
supervised learning. In particular, we consider a convolutional
neural network (CNN) classifier [12] to detect any anomaly of
a given wireless link. The resulting approach can be viewed
as preemptive anomaly detection, and the outcomes can be
used for causal anomaly discovery in the application domain.
If a device is seen as a malfunctioned or malicious device,
the data set uploaded by this device will be ignored and the
device itself may be registered as a suspicious one as well.

II. BACKGROUND

In this section, we present the background for the work in
this paper.

A. Wireless Links

In this paper, we consider wireless links with the two bot-
tom layers, namely physical and link layers so that anomalies
in wireless channels, RF components, or transceivers can be
detected.

In Fig. 1, we show the bottom two layers of commu-
nication systems [13]. The physical layer consists of a pair
of modulator and demodulator, a pair of channel encoder
and decoder, and a given channel. There are a number of
parameters that can characterize the physical layer including
the signal-to-noise ratio (SNR), modulation order, code rate,
and so on [14]. Hybrid automatic request (HARQ) protocols
are used in the link layer for reliable communications over
unknown channels [15].

Fig. 1: An illustration of the bottom two layers, physical and link layers, of
wireless communications.
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When we consider a satellite link, the transmitter can be a
ground station (GS) and the receiver can be a satellite. In this
case, the channel can be characterized by the distance between
the GS and the satellite, weather condition, and so on.

B. Anomaly Detection

Denote by f0(x) the distribution that generates the training
vectors, i.e., x(i) ∼ f0(x). In other words, f0(x) is the
ground truth law of normal behavior. Then, the following two
hypotheses can be considered:

H0 : y ∼ f0(x)
H1 : y ∼ f1(x), (1)

where f1(x)( 6= f0(x)) is an anomaly distribution. As a default
uninformative prior, a uniform distribution can be used for
f1(x) [16]. Then, with known f0(x), a set of anomalies can
be defined as A(τ) = {x ∈ X | f0(x) ≤ τ}, where τ ≥ 0
is a threshold. If a test vector y belongs to A(τ), it can be
seen as an anomaly. From (1), there are two types of decision
errors: Type 1 (or false-alarm) error that results from choosing
H1 when a test vector follows f0(x); and Type 2 (or miss)
error that results from choosing H0 when a test vector follows
f1(x).

If f0(x) is not available, but a dataset, machine learning
approaches can be used for anomaly detection [17]. Provided
that a large number of data samples, {xk}, are available, var-
ious deep learning approaches can be considered for anomaly
detection [17]. For example, the unsupervised anomaly detec-
tion setting can be considered by taking {xk} as unlabeled
data samples.

III. ANOMALY DETECTION FOR WIRELESS LINKS WITH
CNN CLASSIFIERS

In this section, we propose an approach to anomaly
detection for wireless links. As mentioned earlier, we con-
sider anomalies in wireless channels, RF components, or
transceivers, which may not be detectable in higher layers,
e.g., network layer, through the notion of data integrity.

A. A Modeling of Data Integrity

Suppose that a data sample consists of M elements. Thus,
the kth data sample can be expressed by the following vector:

xk = [x1,k . . . xM,k]
T ∈ RM . (2)

We assume that xk is a pattern/configuration obtained from
an unknown distribution, f0(x), i.e., xk ∼ f0(x). In addition,
the features of xk are correlated.

We consider a case where one of the elements of xk has
a finite support. To be specific, assume that xM,k ∈ L =
{1, . . . , L}, where L is finite. For the anomaly detection of
wireless links, the number of (re-)transmissions of a data
packet in HARQ can be `k = xM,k ∈ L, which can be
regarded as a label. Thus, xk can be divided into (x̃k, `k),
where x̃k = [x1,k . . . xM−1,k]

T is the unlabeled data sample
and `k is its corresponding label. The notion of data integrity
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Fig. 2: Illustration of the multi-class classification using CNN. ReLU activa-
tion function used for output of input layer given 5 input nodes; and SoftMax
activation function used for output of hidden layer. Each class represents
number of (re-)transmissions while class5 indicates fail transmission.

towards anomaly detection is as follows: Taking x̃k as an input
and `k as an output, there should be a consistent relationship
across all the pairs of input and output through a predictor or
classifier, denoted by ϕ(·), if xk is drawn from f0(x). That is,
we can expect that `k = ϕ(x̃k) ∈ L, where ϕ(·) represents a
classifier, with a high probability. In general, if a data sample
drawn from a certain distribution is divided into a pair of
input and output, the output should be predicted (or explained)
by the input unless the input and output are independent.
Therefore, for successful modeling of data integrity, elements
in a data sample must be highly correlated.

In terms of wireless links, the input parameters such as
modulation order, channel conditions, and code rate should
predict the numbers of (re-)transmissions of data packets in
HARQ. Thus, a classifier, ϕ(·), can be trained to predict
the number of (re-)transmissions with a training data set.
Anomalies in input parameters or outputs can cause differences
between the predicted output and actual output, which can be
used for anomaly detection.

B. Application of the CNN Classifier

Since there are a large number of parameters/features af-
fecting wireless channels1, classic machine learning classifiers
are not applicable to classify different channel conditions.
Therefore, deep learning [12] needed here. One of the typical
deep learning algorithms based on neural network structures is
CNN. A CNN classifier is a multilayered neural network with
a special architecture to detect complex features in data and
label them accordingly. For instance, CNN is used in image
recognition, self-driving vehicles, powering vision in robots,
and so on.

In this paper, we aim to build a CNN classifier capable
of classifying satellite wireless channel conditions/features
according to the number of required (re-)transmissions of data

1For example, carrier frequency, distance, shadowing, weather, Doppler
frequency, modulation order, code rate, etc.
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Fig. 3: Time-domain channel characteristics setup model. Modeled by Jakes
model, Max Doppler: 50 kHz for LEO orbital speed of 10 km/s, sampling
time: 1e− 6s, LEO-GS distance 225 km.

packets in HARQ. A high-level overview of this classifier
is shown in Fig. 2 that will be discussed in Section IV. In
training phase, all we have to do is to feed this model with a
set of ground truth data set to supervise the learning process.
Once it is built, it can be used to predict the number of (re-
)transmissions, i.e., `k = ϕ(x̃k) ∈ L, with the input features of
different wireless channel configurations. Then, the difference
between the predicted number of (re-)transmissions and the
actual number of (re-)transmissions can be used for anomaly
detection.

IV. EXPERIMENTS

In this section, we present experimental setups and discuss
how anomaly detection can be carried out with a CNN
classifier for satellite links.

A. Setup

Suppose we have a large and well-chosen sample set of
observations from which the normal behavior is to be learned.
For this purpose, we first propose a satellite channel generator
capable of producing xk, k = 1, · · · ,K = 3000 various
wireless link configurations to mimic realistic behaviors of
wireless links for each configuration. In particular, xk con-
sists of five wireless channel features as the inputs of our
classifier, x̃k = [x1,k, · · · , xM−1,k], and the number of (re-
)transmissions as its output, ϕ(x̃k) = xM,k(= `k). Our
simulator is designed according to a downlink scenario where
a low-earth-orbit (LEO) satellite communicates with a GS.
The height of LEO is set at 225 km and the coordinates
of the GS follows a uniform distribution in the LEO’s foot
print area. The rest of parameters are given in Table I, unless
otherwise specified. The five inputs which are the wireless
channel features are set as (i) shadowing variance, (ii) distance
between GS and LEO, (iii) pathloss exponent, (iv) modulation
order, and (v) Rician K-factor2.

2The satellite is the sender and the GS is the receiver. Wireless link is LoS
and modeled as Rician fading and the receiver might be surrounded by various
obstacles like in suburban or residential areas. Inputs are not limited to these
and other parameters can be considered as well; however, in this study, we
only focus on these most variable parameters.
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Fig. 4: Different configurations result in various number of (re-)transmissions,
i.e., 300 configurations each with 200 realizations. Different realizations for
a unique configuration, i.e., same SNR, may result in different number of
(re-)transmissions.

This experimental setup allows up to four (re-
)transmissions and further (re-)transmission request is
considered unsuccessful transmission. As a result, there are
5 potential output classes, i.e., (re-)transmissions, for each
configuration, i.e., xM,k = `k ∈ L = {1, · · · , 5}. That is, `k
is the number of (re-)transmissions, while `k = 5 means that
the transmission is unsuccessful.

Fig. 3 shows a channel configuration generated for the kth
configuration, i.e., xk. Besides, Fig. 4 shows the number of
(re-)transmissions for each SNR corresponding to each config-
uration. Note that the actual SNR may not be available and it is
just to show the outcome of each configuration setup. There are
a total of R = 200 realizations for each configuration in Fig.
4 and each might have different numbers of (re-)transmissions
due to the randomness behavior of wireless channels. As a re-
sult, for instance, in SNR interval [−5, 0] dB, there are multiple
possible (re-)transmissions/classes for a single configuration.
Then, using the maximum likelihood (ML) estimation the label
that has the largest likelihood can be found, given the data
were observed in R realizations for the kth configuration.
Thus, the probability of xM,k = s (re-)transmissions at the
kth configuration is Pr(xM,k = s | {xk}), s ∈ {1, ..., 5}. Our
CNN can be trained to predict the probability of the number
of (re-)transmissions from the data set without anomalies.

In order to train our CNN classifier, we use 1000, 500
and 1500 wireless channel configurations/patterns as train-

TABLE I: Wireless channel generator parameters

System parameter Corresponding value
Carrier frequency [GHz] 1.5
Satellite reference distance [m] 100
LEO-GS distance in LEO’s footprint area
[km] ∼ U(150, 300)

Pathloss exponent-Shadowed urban area ∼ U(2.7, 4.5)
Shadowing variance [dB] ∼ U(0.5, 2.5)
Max. Doppler frequency [KHz] 50
Sampling time 10−6

Number of samples 200
Modulation order QPSK, 16QAM, 64QAM
Noise power [dBm] −195
Rician K-factor ∼ U(−20, −16)

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1758



0 20 40 60 80 100
Epochs

(a)

0.2

0.4

0.6

0.8

1.0
Lo

ss
Train
Test

0 20 40 60 80 100
Epochs

(b)

0.7

0.8

0.9

Ac
cu

ra
cy

Train
Test

Fig. 5: (a) Multi-class Categorical Cross Entropy loss and (b) classification
accuracy of the proposed trained CNN classifier. The classification loss and
accuracy of our CNN classifier for both training and test data sets are below
0.25 and above 90%, respectively.

ing, validation, and test data sets, respectively. As shown
in Fig. 2, we use one layer multi-class CNN model with
50 nodes to train and model our classifier. For training the
classifier, we use Keras model and kernel initializer is
set he uniform. It is also noteworthy that since inputs of
data sets, x1,k, · · · , xM−1,k, are of different types, they need
to be scaled to be standardized. For this purpose, we use
StandardScaler().fit transform(xk) function in Python.

Figs. 5 (a) and (b) show multi-class Categori-
cal Cross Entropy loss and classification accuracy of our
CNN classifier for both training and test data sets, respectively,
which are below 0.25 and above 90%, respectively.

B. Anomaly Detection Evaluation

The CNN classifier in Fig. 2 with the softmax activation
function is used to predict the probability of the number of
(re-)transmissions, which is called a proposed distribution.
Suppose that the softmax output of a classifier is given by
vector qk = [q1,k, · · · , q5,k]. For convenience, we omit index
k. Then, the output of the CNN classifier as a soft-decision is
given by

qs = Pr(Y = s | {xk}), s ∈ {1, ..., 5}, (3)

where Y represents the predicted output.
Fig. 6 compares the hard-decisions of the classifier pre-

dictions with the ground truth labels of 20 configurations for
different scenarios where an anomaly exists in one of the
features in each subplot. For example, in Fig. 6 (a), there
are no anomalies in the data set and the predictions agree
with the actual numbers of (re-)transmissions. However, as
shown in Fig. 6 (b)–(f), with anomalies in different inputs,
the predictions have differences from the actual numbers of
(re-)transmissions. In particular, we can see that anomalies
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Fig. 6: Representation of anomaly detection. Curves with markers indicate
predictions. Solid curve is the ground truth labels. (a) normal data set without
anomaly, (b) anomalous shadowing variance, (c) anomalous distance, (d)
anomalous pathloss exponent, (e) anomalous modulation, and (f) anomalous
Rician K-factor. Standard deviation for all anomalies is set as σ = 1.
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in path loss exponent lead to large differences between the
prediction and actual number of (re-)transmissions.

For anomaly detection, it is necessary to compare the
soft-decisions in (3) with actual number of (re-)transmissions.
To this end, we can use the augmented log-likelihood ration
(ALLR) derived in Appendix, which allows to compare a
proposed distribution (i.e., the soft-decisions of the classifier)
and the realizations (i.e., actual number of (re-)transmissions).
As discussed in Appendix, ALLR is based on the Kullback-
Leibler (KL) distance [18] and can be used to measure the
distance between a proposed distribution and realizations or
samples drawn from an unknown distribution. If the samples
are drawn from the proposed distribution, the values of ALLR
are expected to be small. Otherwise, the value of ALLR will
be large. Thus, ALLR can be used as test statistics for anomaly
detection.

Fig. 7 shows the ALLR between different proposed dis-
tributions and the actual realizations when R = 200. As
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shown in Fig. 7, the black curve with square markers shows
the difference between the data-driven distribution, pk, from
realizations and its proposed distribution qk when there is no
anomaly in the data set is about 0.7. Note that this difference
is different from the Categorical Cross Entropy loss shown
in Fig. 5 (a). The blue curve with circle markers depicts the
difference when there is an anomaly in shadowing variance. It
is illustrated that anomaly in the shadowing variance slightly
increases the difference metric. Similarly, we see the impact
of anomaly in different input features: Rician K-factor, modu-
lation order, distance and path-loss exponent. Note that in this
experiment, anomalies are random with the same distribution
as the original data set, i.e., standard deviation is set σ = 1. As
a result, we conclude that anomaly in the path loss exponent
has the highest impact on the ALLR. In addition, larger
deviations, i.e., σ > 1, result in larger ALLRs.

At this stage, we aim to evaluate the false-alarm and
miss probabilities with respect to the threshold τ . Therefore,
the objective is to illustrate the diagnostic ability of false
alarm and miss events (error type 2) as the discrimination
threshold of the system varies. Fig. 8 illustrates the receiver
operating characteristic (ROC) curves to evaluate the behavior
of the empirical distribution at all thresholds. For this exper-
iment the anomalous path loss exponent with three differed
deviations, σ = 8, 12, 16, is considered for error type 2.
Note that the y-axis is correct detection probability (= 1−
miss detection probability). Each point on the ROC curve
represents a different trade-off between false alarm and miss
detection. Therefore, the ROC curve provides a convenient
gestalt of the trade-off between miss detection and false alarm
performance for different anomalous data sets. Fig. 8 shows
that the area under the Curve (AuC) increases when deviation
in the anomalous data set increases. As a result, the likelihood
of anomaly detection with the proposed ALLR test statistic
becomes larger.

V. CONCLUSIONS

In this paper, based on the modeling of data integrity, we
studied anomaly detection for wireless links. Key parameters
and performance measures in the physical and link layers of
wireless networks have formed data samples that can be used
to see data integrity through the input and output relationship
of a CNN classifier. With a trained CNN classifier, anomaly
detection of wireless links has been performed through the
differences between the predicted output and actual output. To
measure the differences, we also proposed the ALLR based on
KL distance. In the presence of anomalies in test data samples,
the ALLR tends to have large values, while its value is close
to 0 for data samples without anomalies.

Acknowledgment: This research was supported by the
Australian Government through the Australian Research Coun-
cil’s Discovery Projects funding scheme (DP200100391) and
by the Korean government (MSIT) through Institute of Infor-
mation & Communications Technology Planning & Evaluation
(IITP) grant (No.2014-3-00077, AI National Strategy Project).

0 0.2 0.4 0.6 0.8 1

False Alaram Probability

0

0.2

0.4

0.6

0.8

1

P
ro

b
ab

il
it

y
 o

f 
D

et
ec

ti
o

n

Anomalous path loss exponent, σ=16

Anomalous path loss exponent, σ=12

Anomalous path loss exponent, σ=8

Normal data set

Fig. 8: Receiver operating characteristic curves showing the performance of
the proposed model at all thresholds.

APPENDIX

AUGMENTED LOG-LIKELIHOOD RATIO

In this appendix, we discuss a distance measure that allows
us to see the difference between a set of outcomes from
experiments and a proposed distribution.

The information divergence or KL distance between two
distributions, p(x) and q(x), [18] is given by

D(p||q) =
∑
x∈X

p(x) log
p(x)

q(x)
. (4)

The divergence can be used to see the difference between two
distributions.

The likelihood function of a parameter vector of interest,
denoted by p, for a given distribution is given by

f(X|p). (5)

The likelihood measures the goodness of fit of a statistical
model to a sample of data, X , for given values of the unknown
parameters p.

Example 1. Consider a categorical distribution of X ∈
{1, . . . ,K} [19] as follows:

f(X|p) =
K∏

k=1

p
1[X=k]
k , (6)

where 1[·] is the indicator function that is defined as

1[X = k] =

{
1, if X = k
0, o.w. (7)

Let Xm be the mth observation of X . Then, the ML estimate
of p is given by

p̂ = argmax
p∈AK

∏
m

f(Xm|p)

= argmax
p∈AK

∏
k

pckk , (8)
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where AK represents the K-simplex and ck =
∑

m 1[Xm =
k]. After some manipulations, we can show that

p̂k =
ck∑
k ck

. (9)

By combining the KL divergence and ML estimate, we can
find a way to see the difference between a dataset (obtained
from experiments) and a proposed distribution.

First, let consider the following hypothesis testing:

xm ∼ p versus xm ∼ q. (10)

As a test statistics for hypothesis testing, the log-likelihood
ratio (LLR) can be considered, which is given by

LLR(p;q) = log

∏
m f(xm|p)∏
m f(xm|q)

. (11)

For the categorical distribution as an example, the LLR can
be found as

LLR(p;q) =
∑
k

∑
m

1[Xm = k] log
pk
qk

=
∑
k

ck log
pk
qk
. (12)

Then, the following normalized LLR can be considered:

LLR(p;q)∑
k ck

=
∑
k

p̂k log
pk
qk
. (13)

If p is replaced with its ML estimate, the normalized LLR
becomes

LLR(p̂;q)∑
k ck

=
∑
k

p̂k log
p̂k
qk

= D(p̂||q), (14)

which shows the relationship between the KL divergence and
the normalized LLR.

Based on (14), define the following quantity, namely
augmented LLR (ALLR):

ALLR({xm};q) = log
maxp

∏
m f(xm|p)∏

m f(xm|q)

= log

∏
m f(xm|p̂)∏
m f(xm|q)

, (15)

which allows us to measure the difference between the pro-
posed distribution and a given dataset. Clearly, thanks to the
maximization in the numerator, the ALLR is non-negative, i.e.,

ALLR({xm};q) ≥ 0. (16)

As shown above, for a categorical distribution, the ALLR is
proportional to the KL divergence.
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