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Abstract—With the advent of deep learning, the performance
of face recognition has been dramatically improved. On the other
hand, there are few reports that discuss why the performance
has been improved. In this paper, through comprehensive ex-
periments, we analyze which regions are important in CNN-
based face recognition. We employ the major four CNNs,
AlexNet, ResNet, and EfficientNet, to be able to perform face
recognition and three CNN visualization methods, Grad-CAM,
Grad-CAM++, and Score-CAM, to visualize the regions in the
face image that are emphasized by each face recognition method.

I. INTRODUCTION

In biometric recognition, physical features such as face,
iris, fingerprint, and palmprint, and behavioral features such
as handwriting and gait are used for personal authentication
[1]. Face recognition is more convenient and cost effective than
other biometric recognition such as fingerprint recognition and
iris recognition since face recognition does not require special
equipment to acquire face images [2]. Face recognition has
been already applied to person authentication in smartphones,
immigration control, automatic ticket gates, security gates, etc.
because of these advantages.

The most traditional approach of face recognition is ex-
tracting geometric or texture features from a face image .
Keypoints on a face are detected from an image, and the
geometric relation among the keypoints are used as features
[3]. Face recognition methods using feature descriptors ex-
tracted from around keypoints such as Gabor filter and Local
Binary Patterns (LBPs) have been proposed [2], [4]. With
the recent advent of deep learning, the performance of face
recognition has been dramatically improved [5]–[7]. DeepFace
[5] is a pioneering work on face recognition using deep
learning, which demonstrated that facial features extracted by
convolutional neural network (CNN) trained on 4.4 million
labeled face images consisting of 4,030 individuals can pro-
vide recognition accuracy comparable to that of humans. The
difference between the CNN-based methods and the traditional
methods is the input to the discriminators. The input for
traditional methods is handcrafted feature descriptors, while
that for CNN-based methods is face images. CNNs can achieve
high recognition accuracy by automatically extracting features
suitable for face recognition, however, it is not clear what kind
of facial features CNNs is used for face recognition.

One of the approaches for interpreting CNNs is the vi-
sualization of feature maps using the class activation map

[8]–[10], which allows us to analyze which regions CNNs
pay attention to in object recognition. In this paper, through
comprehensive experiments, we analyze which regions are
important in CNN-based face recognition. We train CNNs,
AlexNet [11], ResNet [12], and EfficientNet [13], to be able to
perform face recognition. We employ three CNN visualization
methods, Grad-CAM [8], Grad-CAM++ [9], and Score-CAM
[10], to visualize the regions in the face image that are
emphasized by each face recognition model.

II. VISUALIZATION OF CNN MODELS

The inference process of CNNs is much more complex than
that of standard machine learning, and it is difficult to interpret
it. Interpreting the inference process of CNNs is important to
explore the causes of false recognition by CNNs as well as to
improve the performance of CNNs. One of the approaches
to interpret the inference process of CNNs is to visualize
which regions CNNs pay attention to in their inference. In the
following, we review some typical methods for visualizing the
inference evidence of CNNs.
(i) Mahendran et al. [14]

When using CNN to classify images into multiple classes,
CNN calculates a classification score for each class and
outputs the class with the highest score as the estimation result.
It is possible to visualize the inference evidence of CNN by
identifying input images that have a large classification score
for a particular class and analyzing these characteristics. In
this method, the weight parameters of CNN are fixed and the
input is optimized to maximize the classification score of a
particular class. The gradient descent method is used as well
as the standard CNN training method as an optimizer. While it
is possible to visualize the typical features of each class, it is
not possible to visualize the inference evidence for a specific
input image.
(ii) Local Interpretable Model-agnostic Explanations
(LIME) [15]

Simple machine learning models such as linear models are
inferior in classification performance compared to complex
models such as CNNs, while having high interpretability.
LIME visualizes the inference evidence of CNNs by learning
a new local approximation model around specific images and
interpreting the approximation model. First, the input image is
divided into superpixels, and several images are created with
some of the superpixels masked. These images are input to
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CNN to be visualized, and classification scores are calculated.
Next, a linear model is trained to output the classification score
of CNN using the masking pattern of the superpixels as input.
The weight parameters of the trained linear model are used as
a measure of the importance of the corresponding superpixels.
By masking the superpixels with low weights, the regions that
are important for CNN inference can be visualized. While
visualization is possible regardless of the network architecture
of CNNs, it is difficult to achieve precise visualization since
the visualization results depend on the superpixels.
(iii) Guided-backpropagation (GBP) [16]

In training CNN, a loss is calculated between the output of
CNN and the correct label, and the gradient is calculated for
each weight parameter of CNN for the loss. Since the gradient
represents the decrease in loss with increasing values of the
weight parameters, the weight parameters can be updated to
minimize the loss by multiplying the gradient by the learning
rate and subtracting it from the weight parameters. If the
same procedure is used to find the pixel-wise gradient of the
input image for the loss, the gradient represents the impact of
each pixel of the input image on the loss. In GBP, the per-
pixel gradient of the input image to the loss is obtained by
focusing on positive gradients. By visualizing the magnitude
of the gradient as a heat map, we can visualize the information
that has positively influenced the inference results. Similar to
Mahendran et al. [14], which uses the gradient of the input,
GBP can visualize the inference evidence for a specific input
image. However, in recent years, it has been pointed out that
the visualization results from GBP do not depend on the
weight parameters of the CNN, and edge information is easily
emphasized [17].
(iv) Class Activation Mapping (CAM) [18]

The first step in classifying using CNNs is to extract features
using convolutional and pooling layers. The extracted features
are converted to 1D vectors and input to all the convolutional
layers to calculate the classification score. Some of the CNNs
proposed so far for image classification use Global Average
Pooling (GAP) to convert the extracted features to a 1D vector
[12], [13], [19]. GAP is a method that aggregates features into
a single value per channel by calculating the average value for
each channel of the features. In most cases, GAP is used to
reduce the features to a 1D vector, and then a single fully-
connected layer is used to calculate the classification score.
Therefore, the fully-connected layer can be regarded as a
linear model that calculates the classification score for each
class using the 1D features as input. The weight parameters
of the fully-connected layer corresponding to each class are
the measures of the importance of each channel of features
in the calculation of the classification score. In CAM, the
weighted sum of the features output by the final convolutional
layer in the channel direction is calculated based on the weight
parameters of the fully-connected layers, and output as a heat
map. Although it can provide relatively detailed visualization,
it is not very useful for general purpose since the target CNN
needs to satisfy the aforementioned network architecture.

Several methods have been proposed to compute the
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Fig. 1. Overview of CAM and its advanced methods.

channel-wise weights of features independent of the CNN
network architecture [8]–[10]. Fig. 1 shows an overview of
CAM and its advanced methods. Grad-CAM [8] and its ex-
tended method, Grad-CAM++ [9], use gradients for weighting,
as well as GBP [16]. These methods generate a heat map
by calculating the pixel-wise gradients of the features against
the classification scores, weighting the features, and adding
them in the channel direction. In Grad-CAM, the gradients
calculated for each pixel are averaged for each channel and
multiplied by each channel of the feature value. On the
other hand, Grad-CAM++ multiplies the weighted sum of the
gradients calculated for each pixel to each pixel of the feature.
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Another method that calculates the weights for each channel of
the features using a method other than gradient is Score-CAM
[10]. In Score-CAM, the features are normalized to the range
[0, 1] per channel and upsampled to the same size as the input
image. The upsampled features are multiplied by the input
image for each channel to generate mask images, and each
mask image is input to CNN to obtain a classification score.
The weight of the feature for each channel is determined based
on the classification score.
(v) Attention Branch Network (ABN) [20]

As mentioned above, there are limitations in the network
architecture of CNNs to which CAM [18] can be applied. ABN
is the concatenation of another network (Attention Branch)
that applies CAM to the target CNN. Figure 2 shows an
overview of ABN. The target CNN is divided into a feature
extractor and a classifier, and the output of the feature extractor
is input to the attention branch. The attention branch generates
a heat map (attention map) that represents important regions
for inference as well as classifying classes. The output of the
feature extractor is multiplied by the attention map, and the
classifier performs class classification separately from the at-
tention branch. By using the classification results for training,
the performance of CNN can be improved while visualizing
the inference evidence. On the other hand, when applying
the visualization to trained CNN, it is necessary to train the
concatenated attention branch separately, which requires more
time and effort to visualize the inference evidence.

III. FACE RECOGNITION USING CNN

In this paper, we use AlexNet [11], ResNet [12] and
EfficientNet [13] as backbone networks for face recognition
using CNNs. We extract 512-D feature vectors from face
images using each CNN and classify them using a classifier
consisting of one fully connected layer. The feature vectors
are extracted from a pair of face images using CNN, and
the verification performance is evaluated based on the cosine
similarity between the feature vectors. Note that, in this paper,
the architecture after the final pooling layer of each network
is changed to GAP layer, the batch normalization layer, the
dropout layer (drop ratio 0.5), and the fully-connected layer
(512 units). We describe the overview of each CNN in the
following.

(i) AlexNet1: AlexNet was the top-performing network archi-
tecture in ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) 20122, consisting of five convolutional layers and
two fully-connected layers. The total number of weight pa-
rameters in AlexNet is 2,601,792.
(ii) ResNet1: It has been reported that the performance of
CNNs before ResNet does not improve even if the layer
depth is increased beyond a certain level due to problems
such as vanishing gradient. ResNet achieves deeper CNNs
by introducing a skip structure called the shortcut connection,
and achieves higher classification accuracy than conventional
CNNs in image classification. In this experiment, we use
ResNet-34, which contains 16 convolution blocks consisting of
two convolution layers. The total number of weight parameters
in ResNet is 21,548,352.
(iii) EfficientNet3: EfficientNet is automatically designed con-
sidering the balance of network depth (number of convolu-
tional layers), breadth (number of output channels of con-
volutional layers), and resolution (input size of convolutional
layers). EfficientNet achieves higher accuracy with fewer pa-
rameters than conventional CNNs. EfficientNet has a structure
consisting of a large number of serialized convolutional blocks
as proposed in MobileNets [19]. In this experiment, we use
EfficientNet-B1, which consists of 23 convolutional blocks.
The total number of weight parameters in the network is
6,266,016.

IV. EXPERIMENTS AND DISCUSSION

In this section, we describe the training of face recognition
methods and the analysis of their inference evidence. We
generate several different face recognition methods consisting
of different combinations of types of CNNs, with and without
face detectors, and with and without pretraining using the
ImageNet dataset [21]. Guided-backpropagation (GBP) [16],
Grad-CAM [8], Grad-CAM ++ [9], and Score-CAM [10] are
used to visualize the inference evidence of face recognition
methods.

A. Datasets

For training and performance evaluation of the face recog-
nition methods, we use the public datasets: VGGFace2 dataset
[22] and Labeled Faces in the Wild (LFW) dataset [23],
respectively. Each image is resized to 160 × 160 pixels,
normalized to the pixels having the range [−1, 1], and input
to the CNN. For VGGFace2, 10% of the images are separated
by ID and used as validation data. The validation data is used
to control the learning rate and the number of epochs as a
measure of the generalization performance of CNNs, and also
to visualize the inference evidence.
(i) VGGFace24: VGGFace2 consists of 3,310,000 face images
taken from 9,131 people. The number of images per person
is 80 ∼ 843 (average 362.6 images). The size of the images

1https://pytorch.org/docs/stable/torchvision/models.html
2http://image-net.org/challenges/LSVRC/2012/
3https://github.com/lukemelas/EfficientNet-PyTorch
4https://github.com/ox-vgg/vgg face2
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is not standardized, and is approximately 300 pixels per side.
It is recommended that the data be separated into training
data consisting of 3,140,604 images and test data consisting
of 169,396 images. In this experiment, we use the test data
(500 people) for training CNNs to reduce the training time.
(ii) LFW5: The LFW consists of 13,233 face images taken
from 5,749 people. The number of images per person is
1 ∼ 530 (average 2.3 images). The image size is standard-
ized to 250 × 250 pixels. In this experiment, we follow the
official experimental protocol and use 6,000 pairs of 7,701
images (3,000 genuine pairs and 3,000 impostor pairs) for
performance evaluation.

B. Evaluation Metrics
As mentioned above, in this experiment, we extract feature

vectors from paired images using CNN and calculate the
cosine similarity between the feature vectors. The closer the
cosine similarity between the feature vectors is to 1, the
smaller the angle between the two feature vectors, i.e., the
more similar the two feature vectors are. A threshold value
is set for the cosine similarity, and if the similarity is higher
than the threshold value, the two images are considered as a
genuine pair. If the similarity is lower than the threshold, the
two images are considered as an impostor pair. These results
are compared with the correct labels in the dataset, and the
accuracy and error rate are calculated.

In this experiment, we use the accuracy, Equal Error Rate
(EER) and Area Under the Curve (AUC) as evaluation metrics
for face recognition. The accuracy is the maximum value of
the correct response rate for all test data. The threshold is set
so that the correct response rate is maximized. EER is the
error rate such that False Acceptance Rate (FAR) and False
Rejection Rate (FRR) are equal. FAR is the ratio of pairs
that are incorrectly considered the genuine pairs among the
impostor pairs, and becomes larger the lower the threshold is
set. FRR is the ratio of pairs that are incorrectly considered the
impostor pairs among the genuine pairs, and becomes larger
the larger the threshold is set. A large FAR causes security
problems, while a large FRR reduces the convenience of the
biometric recognition system. In personal authentication, EER
is used as the major evaluation metric since it is necessary
to design an authentication system considering the balance
between FAR and FRR. The curve with the True Acceptance
Rate (TAR) on the vertical axis and the FAR on the horizontal
axis is called the Receiver Operating Characteristic (ROC)
curve. AUC is the area of the lower part of the ROC curve
and takes values in the range [0, 1]. The closer AUC is to 1,
the lower FAR and the higher TAR are, i.e., the more ideal
the authentication system is.

C. Experimental Condition
If face detection is performed in preprocessing, Multi-task

Cascaded CNN (MTCNN)6 [24] is used as a face detector.
We set a margin of 20 pixels when cropping face regions and

5http://vis-www.cs.umass.edu/lfw/
6https://github.com/timesler/facenet-pytorch

select the detection regions that are close to the center of the
image and have a large area preferentially. For pretraining,
we download and use pre-trained models on the ImageNet
dataset from the distributors of each network architecture. For
optimization, Nesterov Accelerated Gradient (NAG) [25] is
used. The initial learning rate is set to 0.01, and if the loss of
validation data does not improve for five consecutive epochs,
it is reduced by 10% of the original value. If the loss of the
validation data does not improve for 10 consecutive epochs or
after 100 epochs, the training is finished.

D. Recognition Accuracy for LFW

Table I shows the recognition accuracy of each face recog-
nition model on the LFW dataset. AlexNet, ResNet-34, and
EfficientNet-B1 achieve the highest recognition accuracy in
this order. For all CNNs, the highest accuracy is achieved
when both face detection and pretraining are used. The highest
accuracy is achieved when only face detection is used, when
only pretraining is used, and when both face detection and
pretraining are not used, in that order. Most of CNNs achieve
EER of less than 10%, which confirms that the training was
done correctly.

E. Visualization of the Inference Evidence for Face Recogni-
tion CNNs

First, we compare the visualization methods. For ResNet-
34 (no face detection and no pre-training), we input 10 face
images randomly sampled from the validation data, and obtain
the classification scores of the correct response classes. Based
on the classification scores, visualization is performed using
four visualization methods, and the visualization results are
compared. Fig. 3 shows a comparison of the visualization
methods. For GBP, we can observe that the edges such as the
contours of the face and nose are emphasized. The area around
the eyes is also emphasized for both face images. In Grad-
CAM and Grad-CAM++, there is no significant difference
in the output results, and the areas around the mouth, nose,
cheeks, and eyes are highlighted for all the face images. In
Score-CAM, there is a difference in the highlighted area for
each face image. The highlighting area is more limited than in
Grad-CAM. In addition to the areas around the mouth, nose,
cheeks, and eyes that are similar to those in Grad-CAM, the
forehead is strongly highlighted in some images.

Next, we compare the visualizations among the face recog-
nition methods. In the same way, we input 10 face images
to each face recognition model and visualize the inference
evidence for each model using Score-CAM. Fig. 4 shows
the comparison of the visualization results among the face
recognition methods. Comparing the visualization results of
AlexNet (without face detection and without pre-training) and
EfficientNet-B1 (without face detection and without pretrain-
ing), it can be observed that common regions are highlighted
for the same face image. On the other hand, the visualization
results of AlexNet (with face detection) and EfficientNet-
B1 (with face detection) are partially different. Some of the
visualization results also differ depending on whether or not
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TABLE I
SUMMARY OF RECOGNITION ACCURACY OF EACH CNN FOR LFW.

Network Face detection Pre-training Accuracy [%] EER [%] AUC
AlexNet 88.55 11.50 0.953

� 89.65 10.51 0.961
� 93.22 7.033 0.981
� � 94.07 6.100 0.985

ResNet-34 88.92 11.33 0.959
� 93.23 6.833 0.981

� 93.37 6.700 0.982
� � 95.82 4.325 0.992

EfficientNet-B1 92.07 7.980 0.973
� 93.88 6.233 0.986

� 94.52 5.533 0.988
� � 96.33 3.733 0.994

Input GBP
Grad-
CAM

Grad-
CAM++

Score-
CAM Input GBP

Grad-
CAM

Grad-
CAM++

Score-
CAM

Fig. 3. Comparison of visualization results for ResNet-34 (no face detection and no pre-training).

pretraining is performed. These visualization results suggest
that the part of the face that the face recognition method
focuses on during recognition is not fixed and varies depending
on the input image, CSSs, and the training method.

V. CONCLUSION

In this paper, we analyzed the visualization of the inference
evidence of CNN-based face recognition methods through
comprehensive experiments. We demonstrated that the part of
the face that the CNNs focus on during recognition depends
on the input image, the network architecture, and the training
method. Based on these results, there is a possibility to
improve the performance of face recognition methods by
guiding the region of interest of CNNs through learning, like
ABNs.

Although many researches focusing on recognition per-
formance have been reported, the recent challenge is to
improve the security for biometric recognition systems to
prevent attacks from malicious third parties. Template pro-
tection and data encryption can protect the data inside the
system, however, countermeasures against spoofed input data
are indispensable, which is called anti-spoofing [26]. With the
increasing use of cloud services such as social networking
services, it has become common for users to post their face
images in user profiles, making it easy to collect personal in-
formation including face images from the Internet. Therefore,
a malicious third party can attack a face recognition system by
using face images obtained on the Internet, and thus face anti-
spoofing has been actively investigated as a countermeasure. In
general, face anti-spoofing prevents face recognition systems
from spoofing attacks by detecting whether the input image
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Fig. 4. Comparison of visualization results using Score-CAM.

is real or fake in advance. Face recognition systems must
be improved in terms of security, while face images can
still be obtained from the Internet. The results provided in
this paper indicate which part of the face is recognized by
CNNs, and therefore, the results could significantly contribute
to improving the safety of face recognition methods using
CNNs.
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