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Abstract—A DNN-based face recognition system implicitly
has the information of facial characteristics of the individuals
registered in it. The information could be maliciously revealed or
stolen by a model inversion attack (MIA), which causes a serious
privacy issue. To clarify how much the threat of MIA is real,
methods to perform MIA against a face recognition system have
been studied in recent years. Theoretically, MIA is formulated as
a problem of finding the best image that maximizes the recogni-
tion score outputted by a target recognition system. This can be
achieved by a gradient descent technique if the target system is a
white box whose network structure and parameters are known, as
assumed in the most existing methods. However, this assumption
is not necessarily realistic. Unlike the existing methods, in this
paper, we propose an MIA method that can be carried out
against a black-box system. To enable the proposed method to
generate natural-looking face images, we first introduce a deep
face generator that generates a face image from a random feature
vector, by which MIA is re-defined as a problem of finding
the best feature vector instead of the best image. The proposed
method solve this problem by a gradient descent technique, where
we numerically approximates the gradient of the recognition
score by perturbing the current feature vector several times.
Our experimental results demonstrate that the proposed method
can generate natural-looking face images successfully containing
personal facial characteristics, whose performance is comparable
to the white-box-oriented existing methods.

I. INTRODUCTION

The performance of image recognition systems has rapidly
increased in recent years and is still growing now with the
progress of deep neural networks (DNN). The state-of-the-
art recognition methods are actively developed into cloud
services, whose typical examples include Google Cloud Vision
[1], Amazon Rekognition Image [2], and so on. On the
other hand, attacks on deep learning-based image recognition
systems have also been explored. What kinds of attacks could
be done by malicious people? How much are the attacks real
and serious? These questions should be carefully discussed
to make the cloud-based image recognition services safer and
more secure.

Model inversion attack, abbreviated as MIA [3], [4], is
one of the attacks attracting many researchers’ attention in
the field of multimedia security. Given a certain class label
arbitrarily specified by an attacker, the MIA process aims to
generate a natural-looking image that is recognized as the
given class by a target recognition system. This could cause
a serious privacy issue. For instance, if the target is a face
recognition/identification system in which many individuals
registered, their face images could be generated only from

a class label (i.e., their name) by MIA, which might be
unauthorizedly distributed and misused for impersonation or
fake media generation. To measure the risk of MIA and
develop its countermeasures, investigating possible methods
of MIA is very urgent.

So far, several existing studies have proposed an MIA
method that can generate highly natural images under the
white-box setting, which means the network structure and
the parameters of the target system are known [5]. Although
the knowledge provided by these studies is important, their
assumed white-box scenario is not so realistic; most of the
actual cloud services of image recognition do not open such
information to the public.

Unlike the existing studies, in this paper, we propose an
MIA method that works well in the black-box setting, which
means the network structures and the parameters of the target
system are not disclosed and therefore the attacker cannot
use them. We particularly focus on a face recognition system
as the target of MIA and introduce a deep face generator
that generates a face image from a random feature vector.
The goal of the proposed method is to find the best feature
vector whose corresponding face image is natural as well
as recognizable as the individual arbitrarily specified by the
attacker. To this end, we employ the gradient descent-based
optimization strategy, but we do not compute the theoretical
value of the gradient vector at each iteration of the gradient
descent algorithm. Instead, the proposed method numerically
computes its approximation by adding perturbations to the
current feature vector. The contributions of this research work
are summarized as follows.

• This paper proposes an MIA method working well in the
black-box setting, which demonstrates that MIA can be
performed in a realistic situation.

• Once the deep generator is pre-trained, the proposed
method does not need any training process for MIA,
which is much efficient than existing methods.

• We also provide a criterion to decide the appropriate size
of the perturbations for the numerical gradient approxi-
mation, which further improves the effectiveness and the
efficiency of the proposed method.

The remainder of this paper is organized as below. First, we
review some related studies in Section II. Next, we explicitly
describe the problem setting assumed in most MIA scenarios
in Section III before providing the details of the proposed
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method in Section IV. Then we experimentally evaluated the
proposed method in Section V and finally conclude this paper
in Section VI.

II. RELATED WORK

Attacks on image recognition systems have been discussed
in literature since more than a dozen years ago before DNNs
have become mainstream in this area. Huang et al. catego-
rized the possible attacks into the following two categories:
causative attacks (CA) and exploratory attacks (EA) [6]. The
former degrades the performance of a target system by directly
altering its recognition model or training dataset. Intentionally
sending some outliers to a target system that continually
updates its model by an online algorithm is a typical example
of CA [7], [8]. On the other hand, the latter, EA, analyzes
the recognition model of the target system to steal or reveal
some private information contained in the model. The attack
of generating adversarial examples is a kind of EA, which can
be regarded as a plot of revealing the weak points of the target
system [9], [10]. Model extraction attack, which aims to steal
the target model itself and unauthorizedly make its duplication,
is another example of EA [11], [12], [13], [14], [15], [16]. The
focus of this paper, namely MIA, is also categorized into EA.

MIA first appeared in Fredrikson’s work in 2014 [3], where
the authors considered that input data to a pattern recognition
system consists of privacy-sensitive parts and non-sensitive
parts. For instance, in the case of face images, the detailed
shape of the eyes and that of the mouth are privacy-sensitive
while the rough contour of the whole head region is non-
sensitive. Based on the above consideration, Fredrikson et al.
defined MIA as a process of estimating the sensitive parts
from the non-sensitive parts in addition to a given class
label. They applied their MIA method to a linear regression
model, decision trees, and shallow neural networks in their
work [3], [4] and reported interesting results. Fredrikson’s
work was followed by Wu et al. in 2016 [17], where MIA
was formulated more theoretically. Recently, not only pattern
recognition systems but also recommendation systems have
been considered as a target of MIA [18], [19].

There are two types of MIA methods against image recog-
nition systems: training-based and optimization-based. In the
former, an inverse model of the target system is tried to
be directly constructed. Theoretically, an image recognition
system is regarded as a map from the image domain to the
score vector domain, where each element in the score vector
represents the probability of the input image to be recognized
as the corresponding class. Hence, an inverse model of the
target system, that is, a map from the score vector domain to
the image domain can be designed, which allows the attackers
to perform MIA. Yang et al. employed this approach [20].
However, since the dimension of the image domain is much
higher than that of the score vector domain, the target system
generally forms a many-to-one map. Thus, its inverse model
becomes a one-to-many map, which is difficult to stably train.

On the other hand, the latter, namely an optimization-based
approach, tries to find the best input image that minimizes

a certain loss function. Fredrikson’s original method is cat-
egorized into this type. Zhang et al. also employed this ap-
proach [5]. To generate natural-looking images by MIA, they
utilized a generative adversarial network (GAN) [21], which
was trained by minimizing a loss function consisting of the
adversarial loss and the identity loss. The identity loss becomes
large if the generated image is incorrectly recognized by the
target recognition system. Although this method achieves good
performance, it is computationally heavy because a GAN has
to be separately trained for each class. Moreover, it does not
work in the black-box setting because the network structure
and the parameters of the target system should be known to
perform a gradient descent algorithm in the training process
of the GANs.

In this paper, we also employ the optimization-based ap-
proach and aim to propose an efficient MIA method that works
well in the black-box setting.

III. ASSUMPTIONS AND BASIC STRATEGY OF MIA

In this section, we specify which kinds of information can
be obtained and how they are exploited by the attackers in the
common scenario of MIA that is employed in most existing
studies.

A. Assumptions on the Target System

The target system R is designed as a neural network that
receives a face image x ∈ X as an input and outputs a score
vector y = (y1 · · · yd)

⊤
= R(x) ∈ Rd, where X is a set

of all possible images and d is the number of individuals
registered in the R. The n-th element of the score vector,
yn, indicates how much likely the input image x is the n-
th individual’s face, where 0 ≤ yn ≤ 1. In other words,
yn = p(n|x) is the x’s probability of being recognized as
the n-th class. The owner of the R collects her own image
dataset T to train it. Since the T might contain some private
information, it is not disclosed to the public; only the R itself
is open to its users. When the users send an image x to the
R, it computes y = R(x) and returns it to the users as the
recognition result. In practice, the y might be partially masked
before returned to the users (e.g., only five elements having the
highest scores are returned), but in the common MIA scenario,
all the elements in y are returned for any x ∈ X .

B. Assumptions on the Attackers

From the viewpoint of the MIA attackers, they cannot access
nor exploit T that is owned by the R’s owner. However, they
are allowed to collect another image set S that is independent
of T . The attackers can get all the elements in y = R(x)
for any x ∈ S when they send it to the R. There is no strict
limitation on the number of uses of the R. In the white-box
setting, the network structure of the R and its parameters are
disclosed and could be exploited by the attackers. On the other
hand, in the black-box setting, the attackers do not know such
information.
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C. Basic Strategy of MIA

Suppose the case that the attacker wants to generate the n-
th individual’s face image. To this end, he first sets a one-hot
vector ŷ, whose n-th element is 1 and all the other elements
are 0. Then he tries to generate x̂ ∈ X that satisfies R(x̂) = ŷ.
This can be obtained as

x̂ = argmin
x

{L(y; ŷ)} = argmin
x

{L(R(x); ŷ)} , (1)

where L is a certain loss function. Any kind of functions such
as the mean squared error and the cross entropy can be used
as L, as long as its minimum value is obtained when and only
when y = ŷ. In this paper, we employ the cross entropy loss
because of the following reason.

In terms of the probability theory, the goal of the attacker
is to generate x̂ that maximizes p(x|n), where p(x|n) is the
probability density of the n-th individual’s face images over
X . Using the Bayes’ theorem, we can derive

p(x|n) = λp(x)p(n|x) = λp(x)yn = ληyn (2)

with the general assumption of the uniform prior p(x) = η,
where λ = 1

p(n) is a positive constant. Due to the monotonicity
of the logarithm function, maximization of yn is equivalent
with minimization of − log yn. In addition, we can also derive

− log yn = −
d∑

i=1

ŷi log yi = CrossEntropy(y; ŷ) (3)

using the above ŷ, where ŷi is the i-th element of the ŷ.
Hence, the attacker can obtain x̂ as

x̂ = argmax
x

{p(x|n)}

= argmin
x

{− log yn}

= argmin
x

{CrossEntropy(y; ŷ)} , (4)

which becomes equivalent with Eq. (1) by using the cross
entropy loss as the L.

IV. MIA METHOD IN A BLACK-BOX SETTING

In this section, we describe the proposed MIA method in
detail. To make the description straightforward, we start from
the case of the white-box setting in Subsection IV-A and then
move to the case of the black-box setting in the subsequent
subsections.

A. MIA by Gradient Descent with a Deep Generator

Based on the discussions in Section III, our focus is to
minimize the loss function L(R(x); ŷ) introduced in Eq. (1).
Gradient descent is a straightforward way to solve this prob-
lem. Starting from an initial seed image x(0), we iteratively
update it as

x(t+1) = x(t) − α
∂L

∂x

(
x(t)

)
= x(t) − α

∂L

∂y

(
y(t)

)∂R
∂x

(
x(t)

)
(5)

Fig. 1. MIA method with deep generator (in white-box setting).

where y(t) = R(x(t)) and t = 0, 1, 2, · · · . The positive
constant α is called “learning-rate”, which controls the balance
between the speed and stability of convergence. Theoretically,
we can obtain x̂ by repeating the above updating process
enough times. However, the x̂ obtained by this approach is
often similar to its seed x(0); in other words, x̂ behaves as a
kind of adversarial example for the target system R. Indeed,
the above approach is similar to a standard generation process
of adversarial examples. This problem is caused because the
value of each pixel in x(t) is independently updated from all
the other pixels, which can be avoided by introducing a deep
face generator D.

In the proposed method, the generator D is pre-trained so
that it can generate a natural-looking face image from a m-
dimensional random feature vector z ∈ Rm. The pre-training
process is done only once by the attacker based on his own
dataset S. Then x = D(z) ∈ X is used as an input to the
target system, where our focus moves to finding the best ẑ that
minimizes the loss function L(R(x); ŷ) = L(R(D(z)); ŷ),
that is,

ẑ = argmin
z

{L(R(D(z)); ŷ)} . (6)

As shown in Fig. 1, this is solved by the gradient descent that
updates an initial seed vector z(0) as

z(t+1) = z(t) − α
∂L

∂z

(
z(t)

)
(t = 0, 1, · · · ) , (7)

where

∂L

∂z

(
z(t)

)
=

∂L

∂y

(
y(t)

)∂R
∂x

(
x(t)

)∂D
∂z

(
z(t)

)
. (8)

Note that x(t) = D
(
z(t)

)
and y(t) = R

(
x(t)

)
.

Since the network structure of the R and its parameters
are disclosed in the white-box setting, the attacker can obtain
∂R
∂x (x

(t)) by the back-propagation technique at each iteration
t. Repeating the above updating process enough times, the
attacker finally obtain ẑ and compute the resultant image of
MIA as x̂ = D(ẑ). As mentioned in Section III, we employ
the cross entropy loss as L and therefore L(R(D(z)); ŷ) =
− log p(n|D(z)). Based on this fact, we stop the above
iterative process when exp

(
−L(R(D(z(t))); ŷ)

)
> 0.99 is

satisfied in our experiments.
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Fig. 2. Perturbation-baased gradient approximiation (in case of one-variable
function).

B. Perturbation-based Gradient Vector Approximation

In the black-box setting, the attacker cannot conduct back-
propagation to obtain ∂R

∂x (x
(t)) due to the lack of informa-

tion on the structure and parameters of R. Hence, he has
to compute ∂L

∂z (z
(t)) by another way. Even in this case,

y = R(D(z)) can be obtained and therefore L(y; ŷ) =
L(R(D(z)); ŷ) can be computed for any z ∈ Rm. Hereafter,
we regard the L as a function of z and simply write it as
L(z). To obtain the gradient vector ∂L

∂z (z
(t)), we propose to

use a perturbed vector z(t) + ϵ and its corresponding output
by L, i.e., L(z(t) + ϵ).

For simplicity of consideration, suppose that z is a scalar,
i.e., m = 1. In this case, the theoretical value of the gradient
∂L
∂z (z

(t)) can be approximated by

g =
L(z(t) + ϵ)− L(z(t))

(z(t) + ϵ)− z(t)
=

L(z(t) + ϵ)− L(z(t))

ϵ
(9)

using the perturbation ϵ, as shown in Fig. 2. Smaller ϵ leads
to a better approximation since the limit of g as ϵ approaches
zero is exactly the theoretical value. We extend this idea to
the case of multi-dimensional z, where perturbing z(t) only
once is not enough, thus we perturb it M times.

Let ϵ1, ϵ2, · · · , ϵM be the perturbations. Each ϵk is drawn
from a normal distribution N (0, σ2Im), where Im is the m-
dimensional identity matrix and σ2 is the variance of each
dimension. For any k, L(z(t) + ϵk) can be expressed in the
form of Taylor series, i.e.,

L
(
z(t) + ϵk

)
= L

(
z(t)

)
+ ϵ⊤k

∂L

∂z
(z(t)) +Q(ϵk) , (10)

where Q(ϵk) includes only quadratic and higher degree terms.
When ϵk is enough small, Q(ϵk) is approximately zero and

L
(
z(t) + ϵk

)
− L

(
z(t)

)
≈ ϵ⊤k

∂L

∂z
(z(t)) (11)

is derived. This is the linear approximation of L
(
z(t) + ϵk

)
around z(t). Since the above equation is obtained for all k, s1

...
sM

 ≈

 ϵ⊤1
...

ϵ⊤M

∂L

∂z
(z(t))

= (ϵ1 · · · ϵM )⊤
∂L

∂z
(z(t)) (12)

Fig. 3. Overview of proposed MIA method working in black-box setting.

is further derived, where sk = L(z(t) + ϵk)− L(z(t)). Using
new symbols s = (s1 · · · sM )⊤ and E = (ϵ1 · · · ϵM )⊤,
the above equation is re-written as

s ≈ E
∂L

∂z
(z(t)) , (13)

and therefore ∂L
∂z (z

(t)) can be approximated as

g = (E⊤E)−1E⊤s ≈ ∂L

∂z
(z(t)) . (14)

Using the g, we update z(t) as

z(t+1) = z(t) − αg (15)

instead of Eq. (7). Fig. 3 shows an overview of the proposed
method.

To avoid a singular E⊤E, the number of perturbations M
should be equal to or larger than the dimension of z, namely
m. Now we point out another advantage of introducing the
deep face generator D. The above approximation method is
theoretically applicable without the D, but in this case, we
have to make M very large because the dimension of the
image domain X is much higher than that of the feature vector
domain. Introducing the generator D allows us to use much
smaller M , which drastically improves the computational
efficiency of the gradient approximation.

C. Criterion for Deciding Perturbation Size

The accuracy of the above approximation method highly
depends on the size of the perturbations, namely ||ϵk||, which
is probabilistically decided by σ2. Larger σ2 tends to yield
larger perturbations, which make the linear approximation of
Eq. (11) inaccurate. On the other hand, smaller σ2 tends
to make the perturbations very close to zero, by which the
computation of (E⊤E)−1 in Eq. (14) numerically unstable.
Hence, it is important to appropriately set the value of σ2.

Fig. 4 shows the relationship between the size of the
perturbation and the error of the linear approximation, which
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Fig. 4. Relationship between perturbation size and error of linear approxima-
tion of Eq. (11)

is calculated as ||sk−ϵ⊤k g|| when the perturbation size is ||ϵk||.
Since the error should be small for all k, its summation

C ′ =

M∑
k=1

||sk − ϵ⊤k g||2

= ||s− Eg||2 = s⊤(IM − E(E⊤E)−1E⊤)s (16)

seems adequate as a criterion for deciding the perturbation
size. However, the above C ′ becomes very small regardless of
the computational stability of the (E⊤E)−1 as long as ||s||2 =
s⊤s is close to zero. Hence, we divide the C ′ by s⊤s to
regularize it; that is, we propose to use

C =
s⊤(IM − E(E⊤E)−1E⊤)s

s⊤s
(17)

as the actual criterion instead of C ′. Specifically, we compute
the above C with several different σ2 and employ the one
achieving the smallest C. If C ′ is fixed, smaller C is obtained
from larger ||s||2, and the larger ||s||2 is provided by larger
||ϵk|| because of the linear relationship between sk and ϵk.
Hence, the above regularization is aiming at larger ||ϵk||,
which ensures the computational stability of the (E⊤E)−1.

V. EXPERIMENTS

This section reports the result of the experiments that we
conducted for evaluating the performance of the proposed
method.

A. Experimental Setup

1) Dataset: We used the VGGFace2 dataset [22], which
consists of around 3.31 million images of 9,131 individuals.
Each image contains not only the face region but also the
hair and the neck regions captured from various viewpoints.
Due to the limitation of our computational resources, we
reduced the dataset size by removing non-frontal view images,
extracting only the face region from each frontal view image,
and performing grayscale transformation on the extracted face
regions. As a result, 8,562 indviduals remain, each of whom
has at least 5 samples. Then we extracted three subsets from
the reduced dataset. These are denoted by Q1, Q2, and Q3

in the remainder of this section. The Q1 consists of the face
images of 4,281 individuals (5 samples per individual), which
was used as the attacker’s dataset S to train a deep face

Fig. 5. Network structure of VAE used to train a deep face generator.
“Conv.” and “ResBlock’ ’means convolutional layer and residual block layer,
respectively, where “ks”, “st”, and “ch” mean their kernel size, stride, and
num. of channels, respectively. “FC” is fully-connected layer, where “#units”
means num. of units. “BN” means batch normalization. “LReLU” is leaky-
ReLU activation function.

Fig. 6. Network structure of two face recognition systems Rtar and Reval.

generator. To make the generator have a good performance,
the diversity of face images in S is quite important whereas
its size is not so important. Therefore we only used 5 samples
per person in the Q1. On the other hand, the Q2 and Q3

consist of the face images of 2,141 and 2,145 individuals
(50 samples per individual), respectively, which were used to
train two face recognition systems, Rtar and Reval. The one
trained with the Q2, i.e., Rtar, was the target of MIA. Among
its covering 2,141 individuals, we attempted to generate five
individuals’ face images. We call them “target individuals”
in the remainder. The five target individuals are covered also
by the Q3, hence, the face recognition system trained with the
Q3, i.e., Reval, was used for evaluation. In our experiments, we
input the resultant images of MIA to the Reval to objectively
evaluate the performance of the proposed method. If the
resultant images successfully contain the facial characteristics
of each target individual, they are expected to be correctly
recognized by Reval. Therefore, we employed its recognition
accuracy as the objective evaluation criterion.

Note that there is no overlap between the individuals in
the Q1 and those in the Q2 and Q3. This is also the case
between the Q2 and Q3, except for the five target individuals.
To reduce the use of computational resources, we converted
each face image to grayscale.

2) Network structures: To train the deep face generator D,
we employed a variational auto-encoder (VAE) [23], whose
decoder part was used as D. Mathematically, the D is a map

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1804



Fig. 7. Relationship between perturbation-size decision criterion C and
approximiation accuracy of gradient vectors.

from the latent vector domain to the image domain, whose
smoothness provides a positive effect on the performance of
the gradient approximation. Therefore we employed VAE here.
The network structure of the trained VAE is shown in Fig.
5. We also show the network structure of Rtar and Reval in
Fig. 6. As seen in this figure, the Rtar and Reval have the
same structure except for the last two fully-connected layers,
but their parameters are different since they were separately
trained.

3) Setting of hyper-parameters and seed vector: The VAE
trained above was also used for setting a seed vector z(0). For
each trial of MIA, we randomly selected 16 images from the
attacker’s dataset S, namely the subset Q1, and input them
to the encoder part of the VAE to obtain their corresponding
feature vectors. Then we calculated their average and used it
as z(0).

The proposed method has several hyper-parameters, which
were set as below.

• The learning rate α in Eq. (15) : α = min
(
100, 0.1

||g||

)
.

• The dimension of the feature vector space : m = 32.
• The number of the perturbations : M = 64.

The σ2 that is used for deciding the size of the perturbations
was chosen from the range of [10−4, 100] according to the
criterion C in Eq (17). The termination criterion for the
iterative process represented by Eq (15) was the same as the
one described in Section IV-A.

B. Accuracy of the Gradient Approximation

We first tested the relationship between the criterion C
and the accuracy of the gradient vector approximation. To
this end, we computed the theoretical value of the gradient
∂L
∂z (z

(t)) by Eq (8) as well as its approximation g by Eq (14)
in each iteration step t under various settings of σ2. Then, we
measured the cosine similarity between the ∂L

∂z (z
(t)) and g

to evaluate the approximation accuracy. The higher similarity
indicates the better approximation accuracy. Fig. 7 shows the
result.

TABLE I
OBJECTIVE EVALUATION: RECOGNITION ACCURACY OF Reval . WB-MIA

AND BB-MIA MEANS WHITE-BOX MIA AND BLACK-BOX MIA,
RESPECTIVELY.

ID:1 ID:2 ID:3 ID:4 ID:5 Avg.
WB-MIA 86.0% 89.0% 26.0% 79.0% 97.0% 75.4%
BB-MIA 88.0% 82.0% 25.0% 81.0% 99.0% 73.4%

As seen in Fig 7, there is a clear correlation between the
approximation accuracy and the criterion C; a higher accuracy
can be achieved with a lower C. This result demonstrates
that our proposed C is a good criterion for deciding the
perturbation size. When C < 10−1 = 0.1, the approximation
accuracy becomes higher than 0.8 in terms of the cosine
similarity. We empirically found that this accuracy is enough
to make the MIA process successful. The same tendency was
found when we used another method such as GAN to train a
deep face generator D in an additional experiment, which is
not reported in this paper due to space limitations.

C. Performance of the Proposed MIA Method

Next, we examined the performance of the proposed
method. In this examination, we also conducted the white-box
MIA for the comparison with the proposed method, namely
the black-box MIA. For each of the five target individuals
mentioned in the previous subsection, we attempted MIA 100
times using different seed vectors. Some examples of the
resultant images are shown in Fig. 8 with actual training
images of the Rtar. Not only the images generated by the
white-box MIA but also those generated by the black-box MIA
look natural and successfully mimic each target individual’s
facial characteristics contained in the training images. The
generated images are a little blurred, which arises from the
use of a VAE decoder. A possible solution for the blurring
problem is to use a more sophisticated face generator as D.

To quantitatively evaluate the images generated by MIA, we
input them to Reval and measured its recognition accuracy,
as previously mentioned. The result is shown in Table I,
where the recognition accuracy on the images of the black-
box MIA is comparable to that of the white-box MIA. This
indicates the high performance of the proposed method. Only
the face images of the target individual ID:3 are not correctly
recognized even in the case of the white-box MIA. We guess
the reason is as follows. The subset Q3, which was used
to train Reval, contains some other individuals having quite
similar facial characteristics to the ID:3 person, whereas the
subset Q2, which was used to train Rtar, does not contain
such individuals. Hence, the images of the ID:3 person tend
to be misrecognized only by Reval.

In addition to the above objective evaluation, we also
conducted a subjective evaluation, where we gave two ques-
tionnaires to nine human subjects. In the first questionnaire, we
showed 20 images generated by MIA to the nine subjects and
asked them who is the person in each image. More specifically,
real images of the five target individuals (ID:1-5) and those
of two additional dummy individuals were also shown as
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Fig. 8. Examples of face images generated by MIA on Rtar and its actual training images

Fig. 9. Example of the questions given to human subjects in the first
questionnaire. Images listed in the first row are the real face images of seven
individuals A-G. Among them, A, C, D, E, and G are the target individuals
of MIA in our experiment. B and F are two dummy individuals, but this fact
is not notified to the subjects. On the other hand, images listed in the left
column were generated by MIA. For each of them, the subjects try to answer
which of A-G is the same person with it.

candidate classes with the 20 generated images. Then, for each
of the generated images, the subjects were asked to select the
same person with it from the seven candidates, as depicted in
Fig 9. The face identification accuracy by the nine subjects
is expected to be high if the MIA process succeeded. The
result is shown in Table II. In the second questionnaire, we
showed 20 pairs of a generated face image and a real face

image to the nine subjects and asked them whether the paired
images are similar to each other or not. The generated image
was made by MIA, aiming at recognizable as the person in its
counterpart real image. Hence, the subjects’ rate of answering
“yes” in this questionnaire is also expected to be high if the
MIA process succeeded. The result is shown in Table III.

As shown in Tables II and III, the proposed method of
the black-box MIA achieves the performance comparable to
the white-box MIA also in the subjective evaluations. The
performance for the ID:3 person is not low compared to
the other four target individuals, unlike that in the objective
evaluation. This fact indicates that many of the images of
the ID:3 person generated by MIA are similar to her real
face images, but the training set of Reval contains some
other individuals having similar facial characteristics, which
degrades the recognition performance of Reval for the ID:3
person. On the other hand, the performance for the target
individual ID:2 is very low in the subjective evaluations despite
his high performance in the objective evaluation. This is
because his real face images tend to have a beard, whereas it
does not appear in most of the generated images. Essentially, a
beard is not a critical characteristic for face identification, but
it deeply affects human observers’ impressions. Hence, the
generated images of the ID:2 person could not be correctly
recognized as him by the nine human subjects.

VI. CONCLUSIONS

In this paper, we proposed a method for MIA on a black-box
face recognition system. MIA can be formulated as a problem
of finding the best face image that maximizes the recognition
score outputted by a target recognition system. Existing MIA
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TABLE II
SUBJECTIVE EVALUATION 1: FACE IDENTIFICATION ACCURACY BY NINE

SUBJECTS.

ID:1 ID:2 ID:3 ID:4 ID:5 Avg.
WB-MIA 94.4% 22.2% 72.2% 33.3% 66.7% 57.8%
BB-MIA 72.2% 16.7% 66.7% 44.4% 66.7% 53.3%

TABLE III
SUBJECTIVE EVALUATION 2: RATE OF ANSWERING THAT

MIA-GENERATED IMAGE IS SIMILAR TO REAL ONE.

ID:1 ID:2 ID:3 ID:4 ID:5 Avg.
WB-MIA 94.4% 11.8% 50.0% 77.8% 72.2% 61.8%
BB-MIA 72.2% 22.2% 70.6% 83.3% 88.9% 67.4%

methods solve this problem by a gradient descent strategy on
the assumption that the target system is a white box and its
network structure and parameters can be exploited. However,
this assumption is not correct in the black-box setting, thus
we proposed to numerically approximate the gradient vector
in each iteration of the gradient descent by a perturbation-
based approach. In the proposed method, it is important for
stabilizing the gradient approximation to appropriately decide
the size of the perturbations. Hence, we also proposed a
decision criterion for it.

We experimentally tested the performance of the proposed
method by both the objective and subjective evaluations,
whose results demonstrate that the proposed method achieves
a comparable performance to the white-box-oriented MIA
methods. However, some of the resultant images generated
by the proposed method have only insufficient quality; they
are partially blurred and lack a beard that is observable in the
real face images. We will try to solve these problems in our
future work. Another important future issue is to further relax
the assumption on a target recognition system. Currently, we
assume that the target system outputs the recognition score
for all the classes covered by it, although this is not realistic.
Therefore, in future work, we will tackle the situation where
the attacker can obtain the score only for a few classes.
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