
Feature Extraction Based on Denoising Auto
Encoder for Classification of Adversarial Examples

Yuma Yamasaki∗1, Minoru Kuribayashi∗, Nobuo Funabiki∗, Huy H Nguyen†, Isao Echizen†
∗ Okayama University, Okayama, Japan
E-mail: 1 pi4m2wk1@s.okayama-u.ac.jp
† National Institute of Informatics, Japan

Abstract—Adversarial examples have been recognized as one
of the threats to machine learning techniques. Tiny perturbations
are added to multimedia content to cause a misclassification
in a target CNN-based model. In conventional studies, such
perturbations are removed using a couple of filters, and for
classification, the features are extracted from the observations
of the output of the CNN-based model. However, the use of well-
known filters may enable an attacker to adjust an adversarial
attack to deal with such filters and fool the detector. In this study,
we investigated the effectiveness of certain auto encoders (AEs)
in extracting the traces of perturbations. Even if the structure of
the AE is leaked, the difference in the training datasets makes
an adjustment of the attack difficult to achieve. The effectiveness
of the AE designed in this study was evaluated experimentally,
and its combination with some known filters was also evaluated.

I. INTRODUCTION

With the progress achieved in the computing devices, image
processing techniques using deep learning have been applied
in various fields. In particular, CNN image classifiers have
significantly contributed to automated driving and face recog-
nition systems. However, CNN image classifiers are known
to be vulnerable to adversarial attacks, which add adversarial
noise, resulting in misclassifications when using CNN image
classifiers. For example, if a car under automatic control
misrecognizes a road sign, a serious accident might occur. In
addition to automated driving technology, because CNN image
classifiers are expected to be applied in various fields, defense
against an adversary is essential.

The generation of adversarial noise includes non-targeted
attacks that look for classes that are likely to be misidentified,
and targeted attacks that misidentify any class of attackers. The
basic approach to non-targeted attacks is to first observe the
output of a target DNN-based classifier from a modified input
image that is perturbed from the original by adding randomly
generated noise. Several approaches have been studied to take
measures against adversarial examples. One approach is to
train an image classifier by applying adversarial examples as
well as supervised datasets [1]. By including such examples
in the training datasets, it becomes possible to make a robust
image classifier. This approach is useful when the possibility
of an attack is known in advance. Another approach is to
identify whether an input image is an adversarial example.
Feature squeezing [2] is one of the most popular methods for
analyzing the features extracted from the changes in the output

of an image classifier when some image processing filters
are used to remove adversarial noise from an input image.
With this method, color bit reduction and smoothing filters
are employed as denoising filters. Although this method can
discriminate adversarial examples with high accuracy for low-
pixel datasets such as MNIST and CIFER10, the results for
high-pixel datasets such as ImageNet have yet to be reported.

In [3], the classification results of normal images and
adversarial examples, after sending both through a denoising
filter, are used as training data to train the adversarial example
detector. With this method, JPEG compression and scaling
are used as denoising filters. Because the architecture of
these filters is well known, it is easy to generate adversarial
examples using a generative adversarial network (GAN)[4] in
such a way that the noise cannot be removed.

In this study, we use an auto encoder (AE) as a denoising
filter, which has the advantage of flexibility in its architectural
design. We adjusted the denoising strength of the filter by
changing the number of images used to train the AE. For
an attacker to fully analyze the architecture of the AE, it is
necessary to obtain image datasets for training and the param-
eters used in the study. In this respect, in terms of security,
the AE is superior to the filters used in previous studies. We
trained a discriminator on adversarial examples, noting that
the adversarial noise was removed and the image classification
results returned to normal when passing the examples through
the designed filter. Implementing the proposed method as a
preprocessing operation in a system using an image classifier is
expected to prevent the injection of adversarial examples into
the image classification system. To confirm the effectiveness of
the proposed method in discriminating adversarial examples,
we evaluated the discrimination accuracy between normal
images and such examples. We also combined the AE with
filters used in previous studies to enhance the capability of
discriminating adversarial examples.

II. RELATED WORK

In this section, we briefly describe the techniques and
defense methods applied to adversary attacks.

A. Adversarial Examples

For an image that can be correctly classified using a
CNN image classifier, it is possible to artificially mislead
the classifier by adding noise that cannot be perceptually

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1815978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021

distinguished. Such an image generated by adding adversarial
noise is called an adversarial example, and the generation
method is called an adversarial attack. There are two types
of adversarial attacks used to fool a DNN-based classifier:
targeted and non-targeted. In a targeted attack, an attacker
creates a classifier to misclassify a particular class, whereas the
attacker generates adversarial examples that are misclassified
by the classifier into any class as long as it is different from
the true class in a non-targeted attack.

For an input image x of its original classified class, an
adversarial example is created by adding noise η such that
the classifier misclassifies x′ = x + η into a different class.
In training a neural network for an image classifier, a loss
function is used to update the weights of the middle layer
for optimization. The gradient of the loss function is used to
modify the input, not the weights, and to add noise to prevent
the classifier from working properly.

To search for an adversarial example x′ that minimizes
distortion with normal images, the optimization problem is
formulated as follows. To optimize this problem, the first term
imposes a similarity between x′ and x. Because the second
term facilitates the algorithm in finding x′ with a small loss
value for class label t, a classifier is likely to predict x′ as
t. By continuously varying the value, we can find x′ with
a minimum distance of up to x and simultaneously deceive
the classifier. The following is a description of typical attack
methods.

1) FGSM[1]: The fast gradient sign method (FGSM) is
an attack method that promotes changes in the classification
results of input images by using the derivative of the loss
function of the model for the input feature vector. Let θ be a
parameter of the classifier model, and let t be a class label for
the correct answer to x.

Let J(θ,x, t) be the loss function used for training, and
treat this loss function as a vector adjusted for the positive
and negative signs of the small value ε such that the loss is
increased by differentiating it by x.

η = ε · sign
(
∆xJ(θ,x, t)

)
(1)

where sign() is a function that returns a positive or negative
sign. The FGSM attack is a method for finding η in this way.
In FGSM attacks, the value of the loss function corresponding
to the specified class t increases when computing t, making it
difficult to infer that t is the value of the loss function, which
leads to a misrecognition by the trainer.

2) BIM[5]: A BIM attack is an attack technique that
repeats an FGSM attack by repeating several finer-grained
optimizations. An adversarial case is created by applying the
FGSM multiple times and clipping the result at each iteration
such that the change in each pixel is not too large. The L1-
and L2- versions of BIM are implemented in FoolBox [6].

3) PGD[5]: Project gradient descent (PGD) attacks gener-
ate adversarial examples by repeatedly applying FGSM attacks
similar to BIM attacks and projecting multiple perturbed
examples as valid examples.

4) deepfool[7]: Deepfool is a non-targeted attack technique
that generates adversarial examples by repeatedly perturbing
an image. The nearest decision boundary is searched, and
the input image is slightly modified to reach the boundary at
each iteration. The algorithm stops once the modified image
changes the classification of the classifier.

5) Carlini & Wagner Method[8]: A Carlini & Wagner
attack can be targeted or non-targeted and has three metrics
to measure its distortion (L0 norm, L1 norm, and L2 norm).
The authors pointed out that the non-targeted l2 norm version
can generate adversarial cases most effectively. Adversarial
examples are generated by solving the following optimization
problem: This attack searches for the smallest perturbation
measured by the L2 norm and makes a classifier classify
the modified image incorrectly at the same time. The C&W
method is known to be a strong attack that is difficult to
defend.

B. Defense Techniques

1) Adversarial Training: One of the available defensive
methods is adversarial training[1]. With this method, an ad-
versarial example is generated during the training phase of
the image classifier, and the adversarial examples are classified
into the correct labels by training the classifier with adversarial
examples as supervised data. Using this method, the clas-
sification accuracy of the adversarial examples is improved;
however, the classification accuracy of normal images that
have not been attacked is decreased.

2) Distillation: A defense method called defensive distil-
lation [9] has also been developed, which uses an approach
called distillation to reduce the size of the network. When
training a new network model, the output of the original
network model is used instead of the teacher data. Because
probabilities are assigned in addition to the classes of correct
answers, the softmax output of the original network model
contains information on which classes have similar charac-
teristics. Here, if we edit the softmax layer to increase the
probability of being assigned to a class that is not the correct
answer, the gradient is reduced, which allows us to train a
new network model with robustness. In other words, to fool
the edited model, it is necessary to change the input to a level
that is perceptible to humans. These defensive methods are
applied during the training phase of the image classifier, and
as a problem with such approaches, they cannot be applied to
models that have already been trained.

3) Defense Method Using Auto Encoder: A denoising
AE (DAE)[10] was used to improve the image classification
accuracy by removing noise before passing through the image
classifier. The objective of this method is to achieve robust-
ness against adversarial noise and improve the classification
accuracy by removing such noise using an AE. In addition,
some studies have aimed at eliminating noise in adversarial
examples using PuVAE[11]. This method removes the noise
by mapping the adversarial examples onto the data distribution
learned from the normal data using a generative model and
achieves denoising with a high speed and high accuracy.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1816

The purpose of these two methods is to remove adversarial
noise from adversarial examples and classify them into normal
labels. The purpose of our study is to detect adversarial
examples, which differentiates it from the above approach.

In this study, we evaluate how adversarial examples are
generated by two types of classifiers: Gaussian denoising AE
(GaussDAE), which is trained to return images with Gaussian
noise to the original images, and AdvDAE, which is trained
to return adversarial examples generated for a classifier to
the original images. The difference between the adversarial
examples generated for AdvDAE and the image classifier,
applied as a single network, and the adversarial examples
generated for the classifier alone is insignificant. To fool the
model composed of GaussDAE and the image classifier, it
was necessary to add sufficient noise to the image for visual
detection. Similar to the above study, it is assumed in [12] that
both AE and image classifiers are known to the attacker. In
this study, by intentionally adding Gaussian noise to the image
before denoising, the intentionally added adversarial examples
were disturbed.

The above studies used MNIST and CIFAR-10 as image
datasets, none of which were validated on images from Im-
ageNet1, which is a database of images with a large number
of pixels. In addition, a way to determine whether the input
image is an adversarial example has yet to be considered.

Similar to the above studies, we use an AE to denoise
adversarial examples. However, the objective of our study is
to identify whether an input image is an adversarial example,
and the features utilized are the sensitivities of a target image
classifier to the denoising filters.

III. CONVENTIONAL METHODS

In the previous section, we described a defense method used
for the training phase of an image classifier. In this section,
we describe a method for detecting adversarial cases, which
is directly related to the purpose of this research.

A. Feature Squeezing

Feature squeezing [2] is a method for distinguishing normal
images from adversarial examples by measuring the distance
using image filters. With this approach, the classification
results of an input image are calculated and some images
are obtained by filtering the operation processing as a feature
vector. If one of the vectors calculated from the filtered images
is far from the vector of the input image, the input is regarded
as an adversarial example.

It is generally considered that multiple filters can be used
together. In [2], image color bit reduction and smoothing were
applied experimentally. In addition, other image-processing
operations can also be used as filters for detecting adversarial
examples. In the classification, the value with the largest dis-
tance between the confidence vectors of each image processing
filter was used. Here, because the value of the distance varies
greatly depending on the image processing filter, there is a

1http://www.image-net.org/

problem with the method used in selecting the value applied
for judging the threshold, that is, the selection of the image
processing filter.

B. Sensitivities to Filtering Strength
As an extension of feature squeezing, JPEG compression

and scaling are used as denoising filters to identify adversarial
examples [3]. This study focused on the sensitivities of the
image classification results of adversarial examples to the
strength of the filters.

JPEG compression is a method for compressing image
data while preventing image degradation by finely quantifying
the low-frequency components, which contain many impor-
tant aspects of an image, and roughly quantizing the high-
frequency components. Because visually important signals are
preserved during lossy operations, JPEG compression is a
useful denoising filter. The strength of the filter can be changed
using the quality factor (QF).

Scaling is an image processing technique that changes the
size of an image. When an image is scaled down, the entropy
of the image data decreases. After scaling up to reconstruct the
image to its original size, the nonlinear effects on the image
result in denoising filtering artifacts. The effects also depend
on the choice of the interpolation algorithm used. By applying
the operation to adversarial examples, adversarial noise can be
removed during data compression while preserving the visual
appearance of the image. The strength of the scaling filter can
be changed in terms of the scaling factor.

By varying the strength of the filters, the transition of the
top labels and their probabilities are extracted to form a feature
vector. In the classification, a narrow neural network composed
of a few fully connected layers was used in [3].

C. Problems with conventional methods
In previous studies, common image processing operations

such as a bit-length reduction, median filter, JPEG compres-
sion, and scaling have been employed as denoising filters. The
architecture of these filters is well known. Hence, attackers
can design a more sophisticated adversarial attack to generate
adversarial examples in such a way that the changes in the
outputs of the image classifier become indistinguishable from
normal images. Furthermore, by making a discriminator based
on these filters, a generative adversarial network (GAN)[4] can
be easily designed, and a sophisticated generator, namely, an
adversarial attack, may be created as a result.

As a solution to this problem, it is necessary to avoid leaking
information regarding the filters. To maintain secrecy, ordinal
image-processing operations should be avoided. Instead, we
investigated a method for implementing an AE as a noise
reduction filter. As the advantages here, the structure of the
intermediate layer, the weights of each node, and the dataset
used to train the AE can be changed, thereby achieving higher
security. [13]

IV. PROPOSED METHOD

In this paper, we introduce an AE as a denoising filter, as
described in the previous study introduced by in Section III.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1817

Fig. 1. Relationship between the number of images used to train the AE and
MSE.

To obtain the confidence vectors, we combine multiple AEs
with different characteristics.

A. Strength of Auto Encoder

An AE is a type of deep neural network model composed
of encoding and decoding operations. The input data are
first compressed during the encoding operation and are then
restored to be as identical as possible to the input data during
the decoding operation. Because the encoding operation is
expected to remove adversarial noise, the AE can be regarded
as a denoising filter. Owing to the DNN-based structure of an
AE, its characteristics can be changed by adjusting the dataset
and parameters used for training the model. Therefore, flexible
control of the characteristics of the denoising filter, particularly
its strength, can be achieved by carefully selecting the dataset
and parameters. In this study, the strength of the denoising
filter was adjusted by changing the number of images for
training the AE designed using the proposed method.

The images used to train the AE were randomly selected
from among 1.3 million images for each of the 1,300 labels
in the color image database ImageNet2. In our preliminary
experiment, we checked the accuracy of the AE reproduction
learned for each number of image patterns. We used the mean
square error (MSE) as the loss function for training the AE.
The relationship between the number of images used to train
the AE and the MSE is shown in Fig. 1. The AE trained with
100 images had a relatively high MSE, whereas the AE trained
with 4000 images had a low value. The AEs trained on 500,
1000, and 2000 images had intermediate values between those
trained on 1000 and 4000 images. Based on these results, the
AEs trained on three patterns (100, 1000, and 4000 images)
were implemented as filters with three levels of intensity.

B. Extraction of Feature Vector

By varying the number of images used to train the AE, the
intensity of denoising was varied, and the classification labels

2http://www.image-net.org/

of the input images of the adversarial examples were extracted
as features indicating the changes in the labels of the normal
images. First, a normal image that has not been attacked is
passed through the image classifier, which outputs the top α
estimated value (top α confidence vector), which labels the
image. The vector of the top-α class labels is denoted by

` = (`1, . . . , `α), (2)

and their corresponding probabilities are

p = (p`1 , . . . , p`α). (3)

When we pass the adversarial examples through the image
classifier to obtain the confidence vector, we use the top α
confidence vector obtained from the normal image before
attacking the adversarial examples as a reference. Because the
confidence vector is obtained by referring to the top α labels
obtained from the normal images, the classification probability
for each label varies from p to pi when filtered with an
arbitrary intensity (i). The classification probability of the top-
α class labels after the change is denoted by

pi = (pi,`1 , . . . , pi,`α), (1 ≤ i ≤ n). (4)

We train a neural network for the detection of hostile cases
by finding features within the variations of p and pi.

C. Mixture of Filters

In a conventional method [3], [14], a feature vector is
constructed from the outputs of the softmax function in a
target CNN-based image classifier using multiple filters, and
the binary classification result is obtained from a shallow
neural network composed of a few fully connected layers.
This framework used for classifying adversarial examples can
be extended by employing different filtering operations.

In general, a suitable combination of filters among a large
number of candidates is a time-consuming task. To simplify
the process, multiple filters are prepared by changing the
strength of the filter. In this study, the strength of the AE was
adjusted by changing the number of images used for training
the AE.

In addition to the multiple AE stages, we also examined the
combination of the AE with JPEG compression and scaling,
which are used in the conventional method [3], [14].

V. EXPERIMENTAL RESULTS

We conducted experiments to evaluate the classification
accuracy of the proposed method. To solve the vulnerability
in terms of secrecy of filter’s specifications, the objective is
to identify adversarial examples with high accuracy while
substituting the other filters with AE.

A. Environments

In this study, we used the Foolbox library to generate
adversarial examples from normal images. In this experiment,
we assume a white-box attack where the architecture of the
image classifier is known to the attacker. For the image
dataset, we use ImageNet’s ILSVRC2012 validation data. For

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1818

Fig. 2. Convolutional Auto Encoder.

the image classifier, we used the ResNet50 model, which is
capable of classifying 1000 classes of the ImageNet image
datasets. We simulated both targeted and non-targeted attack
methods to convert images into adversarial examples. Five
types of targeted attacks, i.e., LBFGS, BIM, PGD, and L1-
and L2-distance minimization, and six types of non-targeted
attacks, i.e., FGSM, Gradient, Deepfool, Newton, Carlini-
Wagner(C&W), and saliency were used. In addition, in this
study, a convolutional auto-encoder (CAE) with a convolu-
tional layer in the intermediate layer is used as a filter. The
configuration of the convolutional AE is illustrated in Fig. 2.
Here, we use Conv, a convolutional layer with kernel size
(3 × 3); Max Pool, a pooling layer with a kernel size of
2 × 2; and Up sampling, an up-sampling layer with a kernel
size of 3 × 3. As described in Section IV-A, three types of
CAEs with different numbers of images used for training were
implemented as denoising filters. We also conducted simu-
lations in combination with JPEG compression and scaling,
which are the filters used in the conventional method. In JPEG
compression and scaling, we vary the intensity of the denoising
by adjusting the QF, which determines the degree of loss
during the compression process. Two different values of QF,
i.e., 90 and 50, were used in this simulation.

B. Classification Accuracy

Using images achieving a successful adversarial attack, we
trained the proposed classifier and measured the classification
accuracy for each attack. The results listed in Tables I and II
show the classification accuracy for targeted and non-targeted
attacks, respectively. The ”3AEs” in Tables I and II are the re-
sults when the feature vectors are obtained by combining three
types of AE with different denoising strengths, as described in
Section IV-A. In addition, ”2JPGs+2SCALs” is the accuracy of
the adversarial example detection when JPEG compression and
scaling, the filters used in the previous study, are combined. As
the results indicate, although the use of the three AEs alone can
detect adversarial examples with a certain degree of accuracy,
the combination of JPEG compression and scaling shows a
remarkable improvement in this regard. However, even when
the AE was removed and only JPEG compression and scaling
were used as filters, a fairly high accuracy was confirmed.
Although the overall accuracy of non-targeted attacks is lower
than that of targeted attacks, the above characteristics can be
seen in both results.

C. Considerations

From the results shown in Tables I and II, compared to JPEG
compression and scaling, the AE appears to be an inferior

filter for detecting adversarial examples with high accuracy.
However, the AE has a high degree of architectural freedom,
which is an advantage not found in the filters applied in
previous studies. Although the architecture of the AE used
in this simulation did not allow for as accurate a detection as
that of conventional methods, there is significant potential for
realizing a filter that can obtain more effective feature vectors
by reconsidering its training and structure.

In addition, non-targeted attacks are slightly less accurate
than targeted attacks. Because a non-targeted attack finds a
different class label close to the original as predicted by an
image classifier, the amount of change in the probabilities
in the top-5 labels can be minimized. Thus, the detection of
adversarial images generated by non-targeted attacks is much
more difficult.

VI. CONCLUDING REMARKS

In this study, we proposed a method for detecting adversarial
examples based on the sensitivity to several denoising oper-
ations of different strengths when using an AE. The method
for detecting adversarial examples based on variations of the
confidence vector obtained as the output of a CNN image
classifier is extremely effective. However, the detection of
adversarial examples using an AE as a denoising filter did
not show any advantages over previous studies in terms of
accuracy.

Nevertheless, the AE has the potential of achieving secrecy
against adversarial attacks owing to its high degree of archi-
tectural freedom. If an AE is used to obtain feature vectors
that are more effective in detecting adversarial examples, it
will be possible to realize a detection system that is less
vulnerable to attackers. It will be necessary to design AEs
that are more suitable for denoising by changing the datasets
used for their training, as well as the structure and parameters
of their intermediate layer, among other factors.

Furthermore, it is currently impossible to quantitatively
evaluate whether a filter using an AE is less vulnerable to an
attacker. A possible method for evaluating the vulnerability
of a filter is to generate adversarial examples in which noise
is assumed to be removed by various filters, such as an AE
and the filters applied in conventional methods, and to then
compare their characteristics.

There is a related study that aims to remove noise in Adv
using PuVAE. This method requires running as many AEs as
the number of data classes operated per adversarial example,
which is computationally expensive and not suitable for data
with a large number of classes. In contrast, our method can
detect adversarial cases with a small number of operations,
which makes it effective for datasets with a large number of
classes, such as ImageNet.

ACKNOWLEDGMENT

This research was supported by JSPS KAKENHI Grant
Number 19K22846, JST SICORP Grant Number JP-
MJSC20C3, and JST CREST Grant Number JPMJCR20D3,
Japan.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1819

TABLE I
CLASSIFICATION ACCURACY IN DETECTING ADVERSARIAL EXAMPLES [%] (TARGETED ATTACK).

FILTER LBFGS BIM PGD L1 L2
3AEs 92.7 93.0 92.2 92.6 91.8

2JPGs+2SCALs+3AEs 99.6 99.8 99.6 100 99.8
2JPGs+2SCALs 98.6 99.4 99.6 99.8 98.4

TABLE II
CLASSIFICATION ACCURACY IN DETECTING ADVERSARIAL EXAMPLES [%] (NON-TARGETED ATTACK).

FILTER gradient FGSM deepfool newton saliency C&W
3AEs 87.0 85.2 89.4 79.0 82.7 77.4

2JPGs+2SCALs+3AEs 90.8 90.3 92.7 93.1 90.8 93.0
2JPGs+2SCALs 91.2 90.5 92.7 92.2 91.8 92.3

REFERENCES

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in Proc. ICLR2015, 2015.

[2] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: detecting adversarial
examples in deep neural networks,” in Proc. NDSS2018, 2018.

[3] A. Higashi, M. Kuribayashi, N. Funabiki, Huy H. Nguyen, and
I. Echizen, “Detection of adversarial examples based on sensitivities
to noise removal filter,” in Proc. APSIPA ASC 2020, 2020, pp. 1386–
1391.

[4] I. J. Goodfellow, J. P.-Abadie, M. Mirza, B. Xu, D. W.-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” arXiv
preprint arXiv:1406.2661, 2014.

[5] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in
the physical world,” in Proc. ICLR2017, 2017.

[6] J. Rauber, W. Brendel, and M. Bethge, “Foolbox: A python toolbox to
benchmark the robustness of machine learning models,” arXiv preprint
arXiv:1707.04131, 2017.

[7] S.-M. M.-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: a simple
and accurate method to fool deep neural networks,” arXiv preprint
arXiv:1511.04599, 2016.

[8] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Proc. IEEE Symposium Security and Privacy, 2017, pp.
39–57.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a
neural network,” in NIPS2014 Deep Learning Workshop, 2014.

[10] M. Miyazaki, K. Yoshida, T. Iida, H. Masuda, and T. Fujino, “Evaluation
of denoising autoencoder as the countermeasure against white-box
adversarial examples attacks,” in Proc. The 34th Annual Conference
of the Japanese Society for Artificial Intelligence, 2020, (in Japanese).

[11] U. Hwang, J. Park , H. Jang, S. Yoon, and N. I. Cho, “Puvae:
A variational autoencoder to purify adversarial examples,” in Proc.
Symposium on Cryptography and Information Security, 2019.

[12] M. Miyazaki, K. Yoshida, H. Masuda, S. Okura, and T. Fujino, “Random
noise addition to input image for mitigating the weaknesses on deep
neural network against adversarial examples with autoencoder coun-
termeasure,” in Proc. Symposium on Cryptography and Information
Security, 2021, (in Japanese).

[13] C. Xiao, B. Li, J.-Y. Zhu, W. He, M. Liu, and D. Song, “Gen-
erating adversarial examples with adversarial networks,” CoRR, vol.
abs/1801.02610, 2018.

[14] A. Higashi, M. Kuribayashi, N. Funabiki, Huy H. Nguyen, and
I. Echizen, “Detection of adversarial examples in CNN image classifiers
using features extracted with multiple strengths of filter,” in Technical
Report of IEICE, 2021, (in Japanese), vol. 120, pp. 19–24.

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1820

