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Abstract—In this paper, we propose an access control method inversion attacks [12] and adversarial attacks [13]. Therefore,
that uses the spatially invariant permutation of feature maps it is crucial to investigate mechanisms for protecting DNN
with a secret key for protecting semantic segmentation models. models from unauthorized access and misuse. In this paper,

Segmentation models are trained and tested by permuting se- . . . .
lected feature maps with a secret key. The proposed method "€ focus on protecting a model from misuse when it has been

allows rightful users with the correct key not only to access a stolen (i.e., access control).
model to full capacity but also to degrade the performance for A method for protecting a model against unauthorized

unauthorized users. Conventional access control methods have access was inspired by adversarial examples [13]-[15] and
focused only on image classification tasks, and these methods image encryption [16]-[21], and it was proposed to utilize

have never been applied to semantic segmentation tasks. In an .
experiment, the protected models were demonstrated to allow secret perturbation to control the access of a model [22].

rightful users to obtain almost the same performance as that Another study introduced a secret key for protecting a model
of non-protected models but also to be robust against access [23], [24]. The secret key-based protection method [24] uses

by unauthorized users without a key. In addition, a conventional key-based transformation that was originally used by an
method with block-wise transformatiqns was also Yeriﬁed tohave ,quarcarial defense in [25], which was in turn inspired by
degraded performance under semantic segmentation models. . .
perceptual image encryption methods [20], [21], [26]-[31].

This model protection method utilizes a secret key in such
a way that a stolen model cannot be used to its full capacity

Deep neural networks (DNNs) have led to major break- without a correct secret key.
throughs in computer vision for a wide range of applications. However, these methods were evaluated only on image
Convolutional neural networks (CNNs) are a type of DNN. classification tasks, and it is not known how well they perform
Current commercial applications for image recognition, object on other advanced tasks. Therefore, in this paper, we consider
detection, and semantic segmentation are primarily powered protecting semantic segmentation models from unauthorized
by CNNs [1], [2]. Therefore, CNNs have become the de access for the first time, and we propose a novel access control
facto standard for visual recognition systems for many differ- method that uses the spatially invariant permutation of feature
ent applications. However, training successful CNNs requires maps on the basis of a secret key. The proposed method
three ingredients: a huge amount of data, GPU-accelerated allows rightful users with the correct key to access a model
computing resources, and efficient algorithms, and this is not  to full capacity and degrade the performance for unauthorized
a trivial task. Therefore, trained CNNs have great business users. In experiments on semantic segmentation, we evaluated
value. Considering the expenses necessary for the expertise, the access control performance of models trained by using
money, and time taken to train a CNN model, a model should feature map permutation. The results show that the protected
be regarded as a kind of intellectual property (IP). models provided almost the same segmentation performance

There are two aspects of IP protection for DNN mod- as that of non-protected models against authorized access,
els: ownership verification and access control. The former while the segmentation accuracy seriously dropped when an
focuses on identifying the ownership of models, and the incorrect key was given. Furthermore, the conventional method
latter addresses protecting the functionality of DNN models proposed for image classification tasks [24] was demonstrated
from unauthorized access. Ownership verification methods are  to have degraded performance under semantic segmentation
inspired by digital watermarking, and they embed watermarks  tasks.
into DNN models so that the embedded watermarks can be

used to verify the ownership of the models in question [3]—
[11]. A. Overview

I. INTRODUCTION

II. PROPOSED METHOD

Although the above watermarking methods can facilitate the Figure 1 illustrates an overview of access control for protect-
identification of the ownership of models, in reality, a stolen ing semantic segmentation models from unauthorized access.
model can be exploited in many different ways. For example, A protected model is prepared by training a network with
an attacker can use a model for their own benefit without secret key K. Authorized users input test images into the pro-
arousing suspicion, or a stolen model can be used for model tected model with correct key K, in which the model provides
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almost the same segmentation map as that predicted by using
a non-protected model. In contrast, when unauthorized users
who do not know key K input test images into a protected
model without any key or with incorrect (estimated) key K,
the model provides a degraded map.

B. Semantic Segmentation

The goal of semantic segmentation is to understand what
is in an image at the pixel level. Figure 2 shows an example
of semantic segmentation. The segmentation model predicts a
segmentation map from an input image, where each pixel in
the segmentation map represents a class label.

The mean intersection-over-union (mean IoU) [32], [33] is
used as a metric for evaluating the segmentation performance.
An IoU value is given for each class by

TP

- TP+FP+FN ’
and the mean IoU is then calculated by averaging IoU values
of all classes. TP, FFP, and FFN mean true positive, false
positive, and false negative values calculated from predicted
segmentation maps and ground truth ones, respectively. In
addition, the metric ranges from zero to one, where a value of
one means that predicted segmentation maps are the same as
that of the ground truths, and a value of zero indicates they
have no overlap.

IoU )]

C. Training Model with Key K

To protect semantic segmentation models, we train models
by randomly permuting feature maps with secret key K. The
permutation is applied to feature maps in a network as in
Fig. 3. In the figure, a fully convolutional network (FCN) [33]
with a ResNet-50 [34] backbone is illustrated as an example,
although the permutation is not limited to the FCN. There are
six feature maps in Fig. 3, and a number of feature maps from
the six maps are chosen to be permuted prior to permutation.
In this paper, a feature map x with a dimension of (¢ X h X w),
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where c is the number of channels, % is the height, and w is
the width of the feature map, is transformed with key K at
each iteration for training a model. There are two steps in the
process of transforming a feature map as below (see Fig. 4).

1) Generate a random vector with a size of ¢ such that
cooal,a €{1,... ¢}y ?2)

where «; # o if 1 # 7.

2) Replace all elements of z, z(i,j,k), i € {1,...,c},
je{l,...;h}, and k € {1,...,w} with z(a;,j,k) to
produce permuted feature map z’, where an element of
x', ©'(i, 7, k) is equal to z(a;, j, k).

If multiple feature maps are chosen to be permuted, the above
steps are applied to each feature map.

The above feature map permutation is spatially invariant
as illustrated in Fig. 4. This spatially invariant property is
important when the permutation is applied to applications that
are required to output images like semantic segmentation.
In contrast, an example of spatially variant permutation is
given in Fig. 5. The conventional protection method for image
classification [24] is carried out by using a spatially variant
permutation method, so it is not available for protecting other
models such as semantic segmentation models as described
later. In this paper, a model protection method for semantic
segmentation is discussed for the first time.

[Oll, o Qg y oy QUG

D. Applying Queries to Model

As shown in Fig. 1, authorized users have key K, and key
K is also used for semantic segmentation. In the proposed
method, a query image is applied to a model trained with K,
and the model is protected by permuting feature maps with
key K as well as for training the model. Protected models are
expected to satisfy the following requirements.

1) Providing almost the same performance as that of using

unprotected models to authorized users.
2) Degrading performance for unauthorized users even when
they estimate key K.

III. EXPERIMENTS AND RESULTS

The effectiveness of the proposed method was evaluated
in terms of segmentation performance and robustness against
unauthorized uses.

A. Experimental Setup

We used a FCN with a ResNet-50 backbone (see Fig. 3) for
semantic segmentation, and the backbone was pretrained with
the 1000-class ImageNet dataset [35]. Segmentation models
were trained by using the PASCAL visual object classes
dataset released in 2012 [36] for semantic segmentation,
where the dataset has a training set with 1464 pairs (i.e.,
images and corresponding ground truths) and a validation set
with 1449 pairs. We split the training set into training and
development sets; 1318 samples were used for training, and
146 samples were used for development when training models.
The whole validation set was used for testing the models. The
conventional method using block-wise transformations [24]
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requires a fixed input image size. Therefore, to compare the
conventional method with the proposed one, all input images
and ground truths were resized to 256 x 256. In addition,
standard data-augmentation methods, i.e., random resized crop
and horizontal flip, were performed in the training.

All networks were trained for 30 epochs by using the
stochastic gradient descent (SGD) optimizer with a weight
decay of 0.0001 and a momentum of 0.9. The learning rate (Ir)
was initially set to 0.02, and it was decayed in each iteration
as

0.9
T
=0.02 1—- —
Ir OO><< 30X42> , 3)

where z is the current iteration number. The batch size was
32. We used cross-entropy loss to calculate loss. After the
training, we selected the model that provided the lowest loss
value under the validation.
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Semantic segmentation model (FCN with ResNet-50 backbone) with feature map permutation

TABLE 1
SEGMENTATION ACCURACY (MEAN I0U) OF PROTECTED MODELS.
BEST ACCURACIES ARE SHOWN IN BOLD.

Selected feature map | Correct (K) No-perm  Incorrect (K’)
1 (Model-1) 0.4645 0.1178 0.0598
2 (Model-2) 0.4279 0.2791 0.0367
3 (Model-3) 0.3591 0.0966 0.0349
4 (Model-4) 0.4973 0.0397 0.0377
5 (Model-5) 0.5778 0.0373 0.0397
6 (Model-6) 0.5768 0.0349 0.0349
Baseline 0.5752

B. Performance Evaluation under Correct Key K

In this experiment, one feature map was chosen from six
feature maps in the network, and segmentation models were
then trained by permuting the chosen feature map with key
K. The trained models were evaluated for authorized users
with K. “Correct (K)” in Table I shows the result under this
condition, where the model trained by permuting feature map
1 is referred to as Model-1 as an example, and “Baseline”
denotes that the model was trained and tested without any
feature map permutation.

From Correct (K) in Table I, several models such as Model-
5 and Model-6 had a high segmentation accuracy, which was
almost the same as that of the baseline, although a couple
of models had a slightly degraded accuracy. Figure 6 also
shows an example of prediction results. From this figure,
the proposed model was demonstrated to maintain prediction
results similar to the baseline.

C. Robustness against Unauthorized Access

We assume that unauthorized users have no key K and that
they know both the method for protecting models and the
permuted feature maps. To evaluate robustness against unau-
thorized access, we also evaluated the six protected models
under two key conditions: No-perm and Incorrect, as shown in
Table I. “No-perm” indicates that protected models were tested
without any feature map permutation. “Incorrect” denotes that
protected models were tested by permuting a feature map used
in training with incorrect (randomly generated) key K.

Table I shows the results under these conditions, where
the results for Incorrect were averaged over 100 incorrect
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keys. From the table, the protected models provided a low
segmentation accuracy, so the proposed models were robust
against these attacks. An example of prediction results of using
Model-6 is also illustrated in Fig. 6. The robustness of the
proposed models can be visually confirmed from the figure as
well.

D. Comparison with State-of-the-art Method

A method for model protection was proposed in [24]. In
the method, input images are transformed by using three
block-wise transformations with a secret key: pixel shuffling
(SHF), negative/positive transformation (NP), and format-
preserving Feistel-based encryption (FFX) [37]. Although this
conventional method can achieve high performance in image
classification models, it has never been applied to other models
such as semantic segmentation ones. To be compared with the
proposed method, it was also applied to semantic segmentation
models.

We trained segmentation models with different block sizes
and tested the models with three key conditions, i.e., Correct,
Plain, and Incorrect, where “Plain” used plain images as input
ones, and “Incorrect” used images encrypted by using an
incorrect key. As shown in Table II, the performance of all
transformations heavily decreased compared with the proposed
method. In particular, when using a large block size, the
accuracy for the correct key was low. In contrast, the accuracy

for the plain and incorrect keys was high, so the performance
was confirmed to be poor for protecting semantic segmentation
models.

Semantic segmentation models are required to output vi-
sual information as an image, so transformations applied
to images or feature maps for training and testing models
have to be spatially invariant, but the conventional block-wise
transformations are not spatially invariant. That is why the
performance of the block-wise transformations was poor for
semantic segmentation models.

IV. COoNCLUSION

We proposed an access control method that uses the spa-
tially invariant permutation of feature maps for protecting
semantic segmentation models for the first time. Semantic
segmentation models are required to output visual information
as an image, so transformations for model protection have to
be spatially invariant, but conventional transformations are not
spatially invariant. The proposed method allows us not only
to obtain a high segmentation accuracy but also for there to
be robustness against various attacks by unauthorized users.
In experiments, the effectiveness of the proposed method was
verified in terms of segmentation performance and robustness
against unauthorized access. In contrast, the conventional
protection method with block-wise transformations that was
proposed for image classification models was demonstrated to
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TABLE I
SEGMENTATION ACCURACY (MEAN IOoU) OF TRANSFORMATIONS OF CONVENTIONAL METHOD

14-17 December 2021, Tokyo, Japan

Block size SHF N.P FF.X
Correct Plain Incorrect | Correct Plain Incorrect | Correct Plain Incorrect
2 0.5062 04518 0.4556 0.5132  0.4904 0.1398 0.3794  0.0346 0.0357
4 0.4560  0.4470 0.3865 04131  0.1762 0.1064 0.3251  0.0349 0.0371
8 0.3154  0.3143 0.2568 0.2421  0.0925 0.0985 0.2660  0.0349 0.0403
16 0.1893  0.1544 0.1370 0.2568  0.0745 0.1063 0.2216  0.0349 0.0690
32 0.0847  0.0493 0.0745 0.1677  0.0463 0.0937 0.1788  0.0349 0.1199
Model-6 (Proposed) 0.5768 (Correct) 0.0349 (Plain) 0.0349 (Incorrect)
Baseline (non-protected) 0.5752

not be applicable to segmentation models. As future work, we
plan to evaluate the robustness against more diverse attacks
such as key estimation attacks.
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