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Abstract—Traditional image encryption methods impede the
process of extracting features from cipher-images, which makes
next step’s retrieval become difficult. There are some encrypted
image retrieval works that extract features from encrypted
images by human initially, then build model to enforce retrieval
by these features. In the paper, we propose end-to-end encrypted
image retrieval, using deep learning model to extract features
from cipher-images and conducting retrieval. We do not need
to extract hand-craft features from cipher-images, because our
retrieval model can extract features by end-to-end learning.
Images are encrypted by block permutation and color value
substitution operation for partial blocks. Our retrieval model
uses Vision Transformer (ViT) as BackBone, combines triplet loss
and cross entropy loss when training. In experiments, we compare
different BackBones — ViT and ResNet50, and the results show
that the retrieval performance is better when using ViT as
BackBone. Our scheme not only achieves end-to-end encrypted
image retrieval, but also obtains significant improvement on
retrieval performance when compared with current methods.

I. INTRODUCTION

Image retrieval is common in our daily life, but nowadays
people gradually pay more attention to data security. People
upload the images to cloud servers because of the fast growth
of the image data, in which they can conveniently retrieve the
images from the servers. But image privacy becomes huge
concern when the images are outsourced to the servers. So
encrypted image retrieval has attracted many researchers, and
many related works have been proposed in recent years [1–6].
These works can be mainly divided into two categories: one-
stage [4–6] and two-stage [1–3]. Two-stage means to extract
features from plain-images, then encrypt features and images.
Differently, one-stage only needs to encrypt images, then
extract features from cipher-images. It is apparently that two-
stage is more inconvenience and causes extra computational
workload for user than one-stage. Therefore, in this paper,
we focus on one-stage which extracts features directly from
cipher-images.

The crucial problem is how to extract features effectively
from encrypted images for one-stage method, and many re-
searchers have proposed methods to deal with this problem.
Zhang et al. [7] proposed to encrypt images by permuting
discrete cosine transform (DCT) coefficients, then extract
these coefficients’ histogram to perform retrieval. Li et al. [8]
proposed a new block transform encryption method using new
orthogonal transforms rather than 8 × 8 DCT. Liang et al. [9]
proposed to encrypt images by stream cipher and permuta-
tion cipher, then extract Huffman-code histogram features to
conduct retrieval. Xia et al. [10] encrypted DC coefficients
by stream cipher on the Y component and encrypted U and

V components by value permutation and position scrambling,
the AC-coefficients histogram of Y component and color
histograms of U and V components were extracted when
retrieval. In [11], the image was divided into two different
components by Gaussian orthogonal matrix, one component
was encrypted by Advanced Encryption Standard (AES), and
the other component was unencrypted which was used to
extract features. The above works calculated distances of
features which did not use learning algorithm to conduct
retrieval, therefore some works proposed to build learnable
model to conduct retrieval. Cheng et al. [12] proposed to
encrypt images by cipher and permutation encryption, then
extract features from cipher-images by Markov process. In
addition, they used support vector machine (SVM) to conduct
retrieval with extracted features. Xia et al. [13] extracted
local color histogram features from cipherimages which were
encrypted by color value substitution and permutation encryp-
tion, then they built bag-of-encrypted-words (BOEW) model to
achieve retrieval. In [14], images were encrypted by AES and
local random features were extracted for image retrieval, all
local features were clustered by K-means algorithm to form
the visual word. Xia et al. [15] proposed to extract secure
Local Binary Pattern (LBP) features, then build Bag-of-Words
(BOW) model to conduct retrieval. These works [12–15] used
learning algorithm to build model to conduct retrieval, but they
extracted features by human initially, which are obviously not
end-to-end learning model.

Compared with traditional machine learning algorithms,
deep learning does not need to extract hand-craft features,
which can achieve end-to-end learning. In this paper, we
use deep learning related techniques to extract features from
cipher-images rather than extracting features by ourselves.
We encrypt images by block permutation and color value
substitution for partial blocks. In our retrieval model, we use
vision Transformer (ViT) [16] as BackBone to extract features,
and our model combines triplet loss [17] and cross entropy
(CE) loss. Using encrypted images as inputs, we can train a
deep neural network model to perform retrieval. In summary,
the contributions of this work are concluded as follows:

1) To the best of our knowledge, we are the first to pro-
pose end-to-end learning for encrypted image retrieval,
which uses deep learning to extract features directly from
cipher-images and conduct retrieval. Our retrieval model
uses ViT as BackBone and combines triplet loss and
CE loss, the experiments demonstrate that the retrieval
performance of our scheme improves greatly than current

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1839978-988-14768-9-0/21/$31.00 ©2021 APSIPA APSIPA-ASC 2021



encrypted image retrieval works which are also one-stage
methods.

2) We explore the retrieval performance with different en-
cryption parameters. We select partial blocks to apply
color value replacement after block permutation, and
the experiments show that when the number of selected
blocks are not more than three fourths, our model can
obtain well retrieval performance.

3) We compare the retrieval performance with different
BackBones — ViT and ResNet50, and the experiments
show that ViT is more fit to our encryption method than
ResNet50 [18] which is a typical model of convolutional
neural network (CNN).

II. PROPOSED SCHEME

Our scheme contains three parts: content owner, server
and authorized user. In order to protect privacy, the content
owner encrypts images and trains a retrieval model by these
cipher-images, then stores the encrypted images and trained
model in the server. When an authorized user needs to retrieve
images, he/she only needs to provide the encrypted query
image to the server. Then the server takes the query as the
input of the model, and returns similar cipher-images to the
authorized user. Finally, the authorized user decrypts and
obtains the corresponding plain-images. The process mainly
includes image encryption and image retrieval, which will be
presented in detail as follows.

A. Image encryption

Our encryption method includes two steps: block permu-
tation and color value substitution for partial blocks. The
pseudo-random key generator we select is BLAKE2. The
sketch of our encryption process is shown in Fig. 1(a). Firstly,
we divide the plain-image (I) into non-overlapping blocks,
the block size is P × P , the width of image is W and the

height of image is H , so the number of blocks (denoted
as blknum) is W×H

P 2 . We generate randomly block position
sequence (denoted as perm) by the encryption key keyperm
[19]. The encrypted image (I

′
) through block permutation can

be defined as follows:

I
′
[i] = I[perm[i]], 1 ≤ i ≤ blknum (1)

where i is block position. The second step is color value
substitution for partial blocks, we generate random replace-
ment sequences (denoted as subs) by the encryption key
{keysubs,∗}∗∈{R,G,B} [19]. Suppose the original value se-
quence is oris = [0, 1, 2, . . . , 254, 255], color value substi-
tution can be calculated as follows:

pv
′
= subs[pv], pv ∈ oris (2)

where pv is the original pixel value, pv
′

is the corresponding
pixel in the encrypted image, we take an example in Fig.
2. M (0<M<blknum) blocks are selected to apply value
replacement encryption. We use encryption key keyselect to
generate randomly block positions [19], then select the top
M blocks from the block positions. It is noted that the
{keysubs,∗}∗∈{R,G,B} are different for different components
(R/G/B), while the keyselect and keyperm are same for differ-
ent components.

7 158 35 211 ... ... 111 4 198

0 1 2 3 ... ... 253 254 255

For example :   

Fig. 2. An example of value replacement.

An example of our encryption method is illustrated in Fig.
1(b). Suppose we divide the plain-image into six blocks, and

Plain-image Block permutation Color value substitution
Partial blocks

Cipher-image

Encryption method

(a) A sketch of our encryption method.

plain-image 

Generate random
block index sequence

Block index:
[1, 2, 3, 4, 5, 6]

[3, 1, 4, 5, 2, 6]

[2, 4, 6, 3, 1, 5] cipher-image

1 2 3

4 5 6

2 4 6

3 1 5

Divide into six blocks

Generate random
block index sequence

Yates shuffle
 blocks

Block permutation
sequence

Block selection
sequence

(b) An example of our encryption method.

Fig. 1. A sketch of our encryption method (a) and an exampple of our encryption method (b).
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the block indexs are [1, 2, 3, 4, 5, 6], then we generate block
permutation sequence and block selection sequence. Suppose
M = 3 and the top M blocks in the randomly block selection
sequence is 3, 1, 4, then these three blocks are applied to value
substitution encryption.

B. Image retrieval

Since Vision Transformer (ViT) [16] divides image into
non-overlapping blocks, and each block is equivalent to a
word. Our encryption method also splits image into blocks,
and we use ViT as BackBone to extract features from cipher-
image rather than CNN, and the experiments show that ViT
is more fit to our encryption method than CNN.

1) Loss: The retrieval model aims at learning represen-
tations of encrypted images, then calculates the distances
among these representations when retrieval. Image retrieval
is a typical type of deep metric learning [20], and the most
common loss function in deep metric learning is triplet loss
[17]. The triplet loss is defined as follows:

LTri = max(0, dpositive − dnegative +m) (3)

where dpositive and dnegative are deep feature distances of
positive pair and negative pair, m is the margin of triplet loss.
The goal of triplet loss is to make the intra-class compactness
and the inter-class separability in the embedding space. But
triplet loss cannot provide globally optimal constraint, our
model loss combines triplet loss with cross entropy (CE) loss,
which is defined as follows:

LCE = −
N∑
i=1

pilog(qi)

pi =

{
1, i = y

0, i 6= y

(4)

where qi is the predicted probability of class i, y is the real
label, and N is the number of classes. The combination of

triplet loss and CE loss can learn more discriminative features,
and the total loss of our model can be defined as follows:

Ltotal = LTri + α ∗ LCE (5)

where α is the weight factor of CE loss.
2) Network Architecture: As shown in Fig. 3, our model

includes two parts: BackBone and Head. The aim of BackBone
is to extract features from cipher-images, and our BackBone
refers to ViT [16]. The ViT is inspired by the standard Trans-
former [21], which often deals with natural language process-
ing (NLP) tasks. We split cipher-image into non-overlapping
blocks which are treated as words like NLP application, and
the block size is P × P , which is the same as the block size
in block permutation encryption. Then we flatten the blocks
and do a learnable linear projection [16], the outputs of this
linear project are block embeddings. Class embedding [16, 22]
is prepended to the sequence of block embeddings, which can
learn the representations of cipher-images. In order to keep
positional information, position embeddings [16, 21] are added
to the block embeddings, then these resulting embeddings
(z0) are served as inputs of the Transformer encoder [16].
The Transformer encoder contains stacked encoders, and the
number of encoders is L, the lth encoder can be calculated as:

z
′

l =MSA(LN(zl−1)) + zl−1, l = 1, 2 . . . L (6)

zl =MLP (LN(z
′

l)) + z
′

l , l = 1, 2 . . . L (7)

where MSA is multi-head self-attention [21], and MLP is
multi-layer perceptron blocks [16], LN is layer normalization
[23]. The output of Transformer encoder is zL, and the
corresponding class embedding is z∗L.

The module Head contains two fully connected (FC) layers,
and acts as classification. Through the first fully connected

BackBone (ViT)

Head Loss
(Triplte loss +  * CE loss)

Head

FC Layer FC Layer
CE Loss

Triplet Loss

Inference 

Encrypted image

non-overlapping blocks

Linear projection of Flattened Patches

*

Position Embedding

Transformer Encoder

Block Embedding

* Class embedding

LN

M
ulti-head

Self-attention

+

LN

M
LP +

Transformer Encoder
L 

Fig. 3. The overview of our proposed retrieval model (We use ViT [16] as BackBone to extract features from cipher-image; The Transformer Encoder and
Head module are detailed on the right; Our loss combine triplet loss and CE loss).
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layer, we can learn deep feature ft. The module Head can be
defined as follows:

ft = σ(W 1(LN(z∗L))) (8)

pred = W 2ft (9)

where W 1,W 2 are matrices about fully connected layer, σ is
activation function which we apply Tanh [24]. In the training
stage, ft is used to compute triplet loss, and the output of
the model returns cross entropy (CE) loss. In the stage of
inference, we calculate the cosine distances of deep features
ft, then rank the distances and return top K similar cipher-
images. Our retrieval model is end-to-end in the training stage
which can extract features from cipher-images by itself, unlike
[7–15] which extract features from cipher-images by human,
then calculate distances of features or build machine learning
model to do retrieval.

III. EXPERIMENTS

In this section, we demonstrate the performance of our pro-
posed scheme by using dataset Corel10K [25]. The Corel10K
dataset has 10000 images and 100 classes, each class has 100
images. The size of images are mostly 126×187 or 187×126.
Our programming language is Python, and the retrieval model
is implemented on the PyTorch [26] platform.

1) Encryption performance: As mentioned in Section II-A,
the block size of block permutation is P × P and we apply
color value replacement on M blocks. In experiments, we
compare two different block sizes, and set P ∈ {8, 16}. In
order to make the image dimensions be multiples of 16, we
resize images to 128×192 or 192×128. So when P = 8, the
number of total blocks is 384, when P = 16, the number of to-
tal blocks is 96. For the parameter M , we select three different
M values which are one quarter, one half and three quarters
of the total number of blocks (blknum) respectively, namely

M
blknum ∈ {

1
4 ,

1
2 ,

3
4}. Specifically, we select M ∈ {24, 48, 72}

when P = 16, and M ∈ {96, 192, 288} when P = 8.
As shown in Fig. 4, we present the corresponding encrypted
images for different encryption parameters.

In order to evaluate the visual safety, we compare the
Peak Signal-to-Noise Ratio (PSNR) values under different
encryption parameters. The mean PSNR of 10000 images un-
der various encryption parameters are calculated, and smaller

TABLE I
COMPARISON OF PSNR FOR DIFFERENT ENCRYPTION PARAMETERS

Encryption parameters PSNR

P = 16

M = 24 ( 1
4
) 9.754

M = 48 ( 1
2
) 9.354

M = 72 ( 3
4
) 9.032

P = 8

M = 96 ( 1
4
) 9.814

M = 192 ( 1
2
) 9.379

M = 288 ( 3
4
) 9.061

PSNR indicates better visual safety. As shown in Tab. I, we can
see that when P = 16, the visual safety gradually increases
as M gets bigger, the same applies to P = 8. In addition,
when P = 8,M = 288 and P = 16,M = 72, namely
M accounts for 3

4 of the total number of blocks (blknum),
P = 16,M = 72 has better visual safety.

Our encryption scheme has five keys
({keysubs,∗}∗∈{R,G,B}, keyperm, keyselect), these keys
are 256-bit each, so the key space of our encryption scheme
is (2256)5, which is enough to resist the brute-force attack.
In addition, the encryption space of value substitution, block
permutation and block selection are (256!)3, blknum! and
blknum!, respectively, thus the encryption space of our
encryption scheme is (256!)3 × blknum! × blknum!, which
also is enough for resisting the brute-force attack. The
decryption process of our scheme is just the reverse of image
encryption operations with secret keys.

2) Retrieval performance: When training our model, we
select 7000 images as training set, and the rest 3000 images
as testing set. Training set has 100 classes and each class
has 70 images. We train our network with the Adam [27]
optimizer, and set learning rate to be 5×10−5,epochs to be 60,
momentum to be 0.9 and weight decay to be 1×10−5. Batch-
size is 50, each batch-size samples 10 classes and each class
randomly samples 5 images when training. Here we compare
the retrieval performance of our scheme with current encrypted
image retrieval works which also extract features from cipher-
images, then analysis the experimental results of our proposed
scheme. All schemes are tested on the same testing set, and
we use the standard evaluation metric mean Average Precision
(mAP) [28] for comparison, the higher mAP implies better

(a) (d)(b) (c) (e) (f) (g)

Fig. 4. Encryption examples of different encryption parameters ((a):plain-image; (b):P = 8,M = 96, (c):P = 8,M = 192; (d):P = 8,M = 288;
(e):P = 16,M = 24; (f):P = 16,M = 48; (g):P = 16,M = 72).
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TABLE II
RETRIEVAL PERFORMANCE COMPARISON (MAP) FOR DIFFERENT

SCHEMES

Schemes mAP

Zhang [7] 0.1478

Li [8] 0.1493

Liang [9] 0.1008

Xia [10] 0.1298

Xia [13] 0.1269

Xu [11] 0.4252

Wang [14] 0.0511

Xia [15] 0.0928

Proposed

P = 8, M = 96 ( 1
4
) 0.5373

P = 8, M = 192 ( 1
2
) 0.5109

P = 8, M = 288 ( 3
4
) 0.4929

P = 16, M = 24 ( 1
4
) 0.5089

P = 16, M = 48 ( 1
2
) 0.4818

P = 16, M = 72 ( 3
4
) 0.4342

retrieval performance.
As shown in Tab. II, we can see that when P = 8,M = 96,

our scheme can obtain the best retrieval performance with
0.5373 mAP, which is higher than other schemes. When
increasing M from 96 to 288 , we can find that the mAP
only decrease to 0.4929 which is also higher than other
schemes. When M

blknum = 3
4 , namely P = 8,M = 288 and

P = 16,M = 72, we can see that the retrieval performance
is better when P = 8,M = 288 with 0.4929 mAP, higher
than P = 16,M = 72 with 0.4342 mAP. There are similar
results when M

blknum = 1
4 and M

blknum = 1
2 , which means

that our scheme is more fit to P = 8 than P = 16 under
the same M

blknum . In addition, Xu [11] can get 0.4252 mAP,
which is higher than schemes in [7–10, 13–15]. This is because
that Xu [11] divided image into two parts by orthogonal
decomposition, and they only encrypted one part, the other part
was without encryption and was used to extract features. But
this may cause serious information leakage. On the contrary,
Wang [14] encrypted images by AES which provided good
security, but the retrieval performance is only 0.0511 mAP
on Corel10K dataset. So the encryption performance and
retrieval performance may restrict each other. We also test our
scheme’s retrieval performance when all blocks are applied
to color value replacement, namely M

blknum = 1, but only
obtains 0.1 mAP. This means that in order to improve the
retrieval performance for end-to-end learning scheme, some
color information should be retained in encrypted images,
which is achieved by sacrificing the encryption performance a
little.

In Section II-B, we mention that our loss function has two
hyper-parameters, m in Eq. 3 and α in Eq. 5. Here we discuss
the retrieval performance of our model under different m and
α. As shown in Tab. III, we test the retrieval performance
on different encryption parameters with different α and m.
From Tab. III, we can see that for P = 8,M = 96, the
retrieval performance is better when α = 1,m = 0.5; for

P = 8,M ∈ {192, 288}, the retrieval performance is better
when α = 0.5,m = 0.5. So different parameters have different
impact on the final retrieval performance.

TABLE III
THE RETRIEVAL PERFORMANCE (MAP) FOR DIFFERENT ENCRYPTION

PARAMETERS WITH HYPER-PARAMETERS m,α.

α = 1

m = 0.3

α = 1

m = 0.5

α = 0.5

m = 0.3

α = 0.5

m = 0.5

P = 8

M = 96
0.4910 0.5373 0.5075 0.5211

P = 8

M = 192
0.4898 0.5031 0.4994 0.5109

P = 8

M = 288
0.4839 0.4897 0.4768 0.4929

P = 16

M = 24
0.5089 0.4927 0.4932 0.4813

P = 16

M = 48
0.4681 0.4756 0.4818 0.4721

P = 16

M = 72
0.4060 0.4342 0.4232 0.4319

TABLE IV
THE RETRIEVAL PERFORMANCE (MAP) FOR DIFFERENT BACKBONE (VIT

AND RESNET50) WHEN HYPER-PARAMETERS m = 0.5, α = 0.5.

BackBone
ViT ResNet50

P = 8, M = 96 0.5211 0.2197

P = 8, M = 192 0.5109 0.1738

P = 8, M = 288 0.4929 0.1395

P = 16, M = 24 0.4813 0.3192

P = 16, M = 48 0.4721 0.2627

P = 16, M = 72 0.4319 0.2232

As mentioned in Section II-B, our retrieval model uses
ViT as BackBone rather than CNN, now we analysis the
reason. Because CNN needs to keep spatial structure of
input images, which is very senstive to block permutation
and color value replacement. CNN is local but ViT is more
global with self-attention [16]. In Tab. IV, we compare the
retrieval performance with different BackBones. Considering
that ResNet50 [18] is a typical CNN model, we use ResNet50
and ViT as different BackBones. We set hyper-parameters
m = 0.5, α = 0.5, and it can be seen from Tab. IV that
the retrieval performance of BackBone ViT is better than
BackBone ResNet50 on our encryption method. To be specific,
when P = 8,M = 288, the BackBone ViT can achieve
0.4929 mAP, which is higher about 36% mAP than BackBone
ResNet50; When P = 8,M = 96, the BackBone ViT can
achieve 0.5211 mAP, which is higher about 30% mAP than
BackBone ResNet50. What’s more, when M increases from
96 to 288, the BackBone ViT only decreases by less than 3%
mAP, but BackBone ResNet50 decreases by about 8% mAP. In
addition, when P = 8,M = 96 and P = 16,M = 24, namely

M
blknum = 1

4 , ResNet50 obtains 0.3192 mAP when P =
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16,M = 24, which is higher about 10% than P = 8,M = 96
with 0.2197 mAP. It means that ResNet50 is more fit to large
block size P = 16, which can keep more local information.
On the contrary, the performance of BackBone ViT changes
little when P = 8,M = 96 and P = 16,M = 24, 0.5211
mAP and 0.4813 mAP respectively. The advantages of ViT
are on full display in Tab. IV, so our retrieval model uses ViT
as BackBone rather than CNN.

IV. CONCLUSIONS

In this paper, we propose an end-to-end learning for en-
crypted image retrieval. Unlike other encrypted image retrieval
works which extract features from cipher-images by human,
our retrieval model can learn features from cipher-images
by itself. We use deep learning to conduct encrypted image
retrieval, use ViT as BackBone and combine triplet loss
and CE loss when training. Images are encrypted by block
permutation and color value replacement for partial blocks.
We not only implement the end-to-end learning scheme for
encrypted image retrieval, but also the experiments show
that the retrieval performance of our scheme is better than
that of current schemes. In addition, we compare different
BackBones: ResNet50 and ViT, and the experiments show that
ViT is more fit to our encrypted image retrieval scheme. In the
future, we will promote the encryption performance of cipher-
images and seek for unsupervised encrypted image retrieval for
end-to-end.
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