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Abstract—Radiometric calibration (RC) is an essential pre-
processing step to correct the non-linearity of camera output
images. The chartless RC is a novel RC approach that does not
need a color checker to do the calibration and attracts intensive
research interests. A challenging issue in the chartless RC is how
to reveal the parameters of the camera response function (CRF)
more effectively from limited camera images. In this work, we
take a general strategy for this issue by deriving more compact
parametric CRF models. Firstly, a novel exponential exponent
gamma curve (EEGC) model is proposed as a more compact
superset to characterize the functional space of CRF. Then the
general criteria for monotonic EEGCs (MEEGC) are derived. Fi-
nally, the analytical solution to low-order MEEGCs (AMEEGC)
is proposed to get some nice constraint-free low-order analytical
CRF models. The curve fitting experiments showed that the
proposed models gave a more compact representation for real-
world CRFs when compared to some existing models. We also
demonstrated how to improve the efficiency of chartless RC
algorithms with the 2nd-AMEEGC model by revisiting Taka-
matsu’s noise-based method, and the results proved our method’s
superiority.

I. INTRODUCTION

Camera response function(CRF) is a fundamental concept
in digital imaging and computer vision. It resembles a non-
linear relationship between the brightness of incident light
and the output image pixel intensity. It is originated from
the sensory non-linearity and/or the non-linear image en-
hancements and is depreciated in many vision-based tasks.
For example, in panorama creation [1, 2], stereo reconstruc-
tion [3], autopilot and visual simultaneous localization and
mapping(VSLAM) [4, 5], they would interfere the stereo
matching processes and cause the systems to be less accurate.
Thus an essential step in these tasks is to calibrate and restore
the CRF non-linearity beforehand, which is often referred to as
the “radiometric calibration(RC).” Traditionally, the RC exper-
iments need to be conducted in a laboratory environment with
a Macbeth color chart/checker [6] – a colored chessboard with
patches of known reflectances. However, with the prevalence
of consumer digital cameras and photo-taking cell phones,
this precondition is usually not met. Moreover, with the

This work was supported by NSFC (Grant nos. 61772571,
62072484) and Chinese national key research and development project
2019QY2203.(Corresponding author: Xiangui Kang)

rapid advancement of intelligent imaging technologies, many
modern cameras can change their CRF adaptively according to
the dynamic scene. And thus, the calibration results obtained
in the laboratory may be inconsistent with those obtained in
the field. In these circumstances, one might need the help of
chartless RC methods, especially when it is inconvenient to
carry the color charts in the wild.

The chartless RC problems have attracted intensive research
interest recently. Researchers proposed a variety of chartless
RC methods, e.g., based on multiple images of different
exposures [7, 8, 9], edge colors [10], geometry invariants [11],
noise characteristics [12, 13, 14], motion blur [15, 16, 17,
18, 19], camera motion [20] or homography [1, 2, 21], skin
pigment [22], and also deep learning [23]. A core issue of
these problems is how to reveal the CRF more efficiently from
limited camera output images. A universal strategy widely
adopted is to employ a compact (low-order) representation
of CRFs as to reduce the parameter space and accelerate the
convergence during the optimization stage. Many low-order
CRF models have been proposed, such as the generalized
gamma curve (GGC) model proposed by Mann and Picard
[24], the low-order polynomial model used by Mitsunaga and
Nayar [8], the polynomial exponent gamma curve (PEGC)
model proposed by Ng et al. [11], and also the pervasively
used empirical model of response(EMoR) model proposed
by Grossberg and Nayar [25]. However, a common issue
is that they can not concisely characterize the functional
space of CRFs, e.g., some curves involved by them did not
met the basic requirements of “valid” CRFs. One of the
inconveniences brought by such redundancy is that we need
to apply extra constraints while using these models, such as
some forms of inequality constraints [25] or penalty terms
on the monotone [16] or prior distribution [10] of the CRFs.
These requirements would add to the burdens of the non-linear
optimization process and make them harder to be solved.

In this work, we try to derive a more compact CRF model
with other nice properties. To approach this goal, we shall
delve into the mathematical basis for the CRFs. For the sake
of brevity, the CRFs investigated here would be taken as global
ones which work independently on each color channel. And
a formal definition of the CRF’s functional space is adopted
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from Grossberg and Nayar [25].
Definition 1 (The Space of CRFs): The functional space

of all valid CRFs, denoted by WCRF , can be given as follows:

O(x, y) = Omax · f (I(x, y)) +Omin, I(x, y) ∈ [0, 1] ,
s.t. f(0) = 0,

f(1) = 1,
f(·) is monotonically increasing,

(1)
where I(x, y) and O(x, y) are the input light intensity and
output pixel value at pixel location (x, y), respectively. For
the CRFs here are location independent, the location (x, y)
will be omitted in later formulations. Omax and Omin denote
the largest and smallest pixel intensities for the output image.
Without losing generality, one shall regard both the inputs and
outputs as normalized, i.e., Omax = 1, Omin = 0. And the
CRF is reduced to O = f(I). Correspondingly, the RC task
can be considered as the process to recover I by reversely
applying the CRFs, i.e., I = f−1(O).

In seeking better representation for the CRFs’ intrinsic
properties, we summarized some of the practically appreciated
properties of a CRF model from existing literature [1, 7, 8, 9,
13, 14], as follows:

Definition 2 (A “Good” CRF Model): A “good” CRF
model should meet a plural of conditions,

1) Across fixed points: f(0) = 0, f(1) = 1.
2) Monotonic: Monotonically increasing within [0, 1].
3) Bounded: 0 ≤ f(I) ≤ 1, I ∈ [0, 1].
4) Smooth: At least C1 continuous(first-order differen-

tiable).
5) Extensible: Gain accuracy by increasing parameters.
6) Analytical: Written in closed-form analytical terms with-

out extra constraints.
7) Compact: Resemble typical real-world CRFs well with

few parameters.
As can be expected, finding an ideal CRF model with all
these virtues would be a non-trivial task. As to the best of
our knowledge, none of the mentioned models had filled all
these requirements.

In this work, we approach this purpose in three steps.
Firstly, a novel exponential exponent gamma curve (EEGC)
model is proposed to confine the functional space of CRF.
Then the general criteria for monotonic EEGC (MEEGC)
are derived. Finally, the analytical solution to low-order
MEEGC (AMEEGC) is proposed to get a nice constraint-free
low-order analytical CRF model– the 2nd-AMEEGC model.
When compared with existing models, our model inherently
conforms to all requirements in Definition 2 including good
compactness and no need for explicit constraints.

The contributions of this work are as follows:
1) We proposed the EEGC/MEEGC models for the compact

analytical modeling of CRFs. And the 2nd-AMEEGC is found
to be an effective low-order analytical representation for
typical CRFs.

2) With extensive curve fitting experiments, we showed that
the compactness of the analytical MEEGC and 2nd-AMEEGC
are superior than the existing analytical CRF models, and also

comparable to the most compact numerical empirical CRF
models, i.e., the EMoR/logEMoR.

3) We applied the 2nd-AMEEGC to Takamatsu’s noise-
based chartless RC scenario. The experimental results demon-
strated its superior performance in improving the convergence
speed and also avoiding infeasible solutions.

The rest of the paper is organized as follows: In the
next section, we first reviewed some existing works on CRF
modeling in chartless RC. Then we derived a theoretical
framework for CRFs involving the EEGC, the MEEGC, and
the 2nd-AMEEGC in Section 3. In Sections 4 and 5, curve
fitting experiments and a noise-based chartless RC task were
used to validate the effectiveness of the proposed models. The
concluding remarks are given in Section 6.

II. RELATED WORKS

A. CRF Modeling in Chartless RC

In the early days, chartless RC researchers focused on
revealing the CRF from images of different exposures. Mann
and Picard [24] firstly used a GGC model to simplify the
CRF estimation. To address more complex CRFs, Debevec
and Malik [7] formulated the problem with a high dimen-
sional (256 dimensions) log domain non-parametric model
with a smoothness constraint. Then Mitsunaga and Nayar
[8] proposed the low-order polynomial(Poly) model and also
the constrained polynomial(ConPoly) model which implicitly
engaged the constraints of crossing (0, 0) and (1, 1). And later,
Grossberg and Nayar [25] further improved the CRF model
compactness with the principal component analysis (PCA)-
based EMoR and logEMoR models. Recently, Grundmann
et al. [26] proposed a linear mixture of EMoR models to
represent more complex CRFs involved in video sequences.
In these scenarios, the chartless RC problem was often given
a quadratic programming(QP) framework, and thus even high
dimensional CRF models could still be solved very efficiently.
However, a fundamental issue of the different exposure based
approach is that when the exposure ratios of the given images
are identical or unknown, there will be a gamma fuzziness
between the revealed CRF f̂(I) and the ground truth one, i.e.,
f̂(I) = [f(I)]γ , which is known as the “Gamma/Exponential
Ambiguity” [1, 7, 8, 26]. In consequence, the image non-
linearity cannot be removed completely by applying f̂−1(O).

Meanwhile, some researchers tried to explore other types
of features to circumvent this obstacle. Some notable fea-
tures involved the image noise [12, 13, 14], color linearity
at object edges [10], locally planer [11, 27] or blurred ar-
eas [15, 17, 18, 19]. More recently, the skin pigment [22]
and convolutional neural networks(CNN) based features [23]
were also explored. Unfortunately, most of these attempts
could not found a fast solution like the QP, and some general
non-linear optimization frameworks had to be used. In these
circumstances, a compact representation of CRF would be
highly appreciated. Ng et al. [11] proposed a PEGC model,
which merited in both good extensibility and compactness for
representing CRFs. A defect of PEGC is that it grows exponen-
tially and is unbounded which might cause numerical issues

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

1859



during the optimization. More researchers chose to use the
EMoR/logEMoR model with additional inequality constraints
or penalty terms [1, 10, 26, 28, 29]. However, these measures
would somehow complicate the optimization procedures by
introducing more tunable hyperparameters and compatibility
issues, e.g., some nonlinear optimization algorithms do not
accept inequality constraints, such as the fminsearch and
fminunc in Matlab.

To summarize, let us remark that, to the best of our
knowledge, none of these models had fully filled the rules
of Definition 2 in Section I, e.g., the GGC model [24] does
not consider the extensibility, the log-domain nonparametric
model [7] is universal but highly redundant, Poly, ConPoly [8]
and PEGC [11] is analytical but unbounded and not compact
enough, the EMoR model [25] is highly compact but subject
to numerical inequality constraints and empirical data. A
fundamental question that needs to be asked is whether it is
possible to found a “perfect” CRF model which could satisfy
all the rules in Definition 2.

B. Takamatsu’s Noise-Based Charless RC Method

In this work, we would demonstrate the effectiveness of
the proposed models with a noise-based chartless RC scenario
investigated by Takamatsu and Matsushita [14]. They revealed
the CRF from noisy images taken from a static scene with
identical exposure settings. The major defects of their method
involved the intensive computation and also the common
defects of most non-linear optimization problems, such as
the risk of being slow convergence and stuck by infeasible
solutions. Nevertheless, for their method has a constant com-
putation cost which is independent to image contents, it would
be more convenient to validate the efficiency improvement
with the proposed compact CRF models in this scenario.

To set off, we shall briefly introduce the major steps of
Takamatsu’s method [14].

1) Firstly, they took multiple pictures from a static scene
with identical exposure settings, e.g., exposure time, ISO,
aperture, white balancing, etc.

2) Then a co-occurrence matrix C(O1, O2) was accumu-
lated from pixels at the same locations. Oi is the pixel intensity
from the i’th observed output images.

3) Finally, they proposed an Image Similarity Met-
ric(ISM) based cost function and adopted an expectation-
maximization(EM)-like optimization strategy to reveal the
CRF parameter and noise parameter alternatively. The detailed
definition of the ISM-based cost function is as follows:
L (α;β) =
1

Z

∫∫
C (O2, O1)∑
O2

C (O2, O1)
g′ (O2)S (g (O1) , g (O2)) dO1dO2,

(2)

where the vector α and β correspond to the CRF parameters
and noise parameters, respectively. g(O) is the ICRF. The
S(g(O1), g(O2)) is the pixel-wise similarity metric defined
in the input signal domain (raw sensor data of the camera)

S (I1, I2) =

∫
p
(
I2|Ĩ

)
p
(
I1|Ĩ

)
p
(
Ĩ
)
dĨ, (3)

where Ĩ is the noise-free ground truth input signal, while
I1 = g(O1) and I2 = g(O2) are two noisy observations of
Ĩ revealed by the ICRF. The p

(
Ii|Ĩ
)

is assumed to be a
variable variance Gaussian distribution

p
(
Ii|Ĩ
)
= N

(
µ=Ĩ , σ2=uĨ + v

)
, (4)

where u ≥ 0 and v ≥ 0 are the two parameters which
constituted β. Z is a normalization term defined as

Z =

√∫∫
S(I1, I2)

2
dI1dI2. (5)

Overall, it is tough to improve the efficiency of this prob-
lem, for the intensive computation required by the numerical
integration in Eq. (3) is solid. To handle this tricky problem,
we would try out the proposed 2nd-AMEEGC model as to
improve the efficiency of the optimization process. Detailed
experimental results will be given in Section V.

III. A COMPACT ANALYTICAL MODEL FOR CRFS

In this section, we will derive a theoretical framework for
the compact modeling of CRFs. Firstly, we will introduce
a novel EEGC model for the general framework of CRF
modeling. Then some closed-formed analytical solutions are
derived for the low-order monotonic EEGCs.

A. The EEGC

The proposed EEGC is a generalization of the GGC[24] and
PEGC [11] which can be defined as follows:

Definition 3 (The EEGC): The general form of EEGC is
defined as:

f (I) = Iexp[ψ(I)], I ∈ [0, 1] , (6)

where ψ(I) is defined as the kernel function of the EEGC.
Without loss of generality, we focus on a polynomial kernel
here

ψ (I) =
∑N

j=0
αjI

j , (7)

where the αj’s are the polynomial parameters. Then with an
N ’th order EEGC, we will have N + 1 parameters in total.
To be consistent, the order of other CRF models will also be
expressed in this way.

The EEGC inherits many virtues from the GGC and
PEGC [11], e.g., it goes across (0, 0), (1, 1) (rule 1), is highly
differentiable (rule 4), can be written in analytical terms(rule
6) and reduces to a canonical gamma correction when N = 0.
Moreover, for its non-negative exponent, f(I) will always
be bounded within [0, 1] (rule 3). From the perspective of
functional space, this boundness constraint makes the EEGC
a more confined supper set for the space of CRFs. This
would also lead to a mathematically induced compactness(rule
7), for a massive number of invalid functions have been
eliminated. Meanwhile, with an extensible order, the EEGC
can approximate arbitrary CRFs tightly within its hull (rule
5). When referring to the rules in in Definition 2, the only
imperfection is that the monotonic constraint (rule 2) is not
met. And we would address this issue in the next section.
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B. The Monotonic EEGC

The EEGC model can be made more concise by eliminating
those non-monotonic functions. In the past, this was usually
achieved by explicitly engaging some constraints, e.g., via in-
equalities constraints [25] and penalty terms on monotone [16]
or prior distribution [10]. Nevertheless, in this section, we shall
do this more implicitly by introducing some nice constraint-
free low-order analytical CRF models.

1) The General Criteria for MEEGC: Firstly, we will
derive the general criteria for the monotonic EEGC (MEEGC).
The MEEGC can be obtained by simply reinforcing a mono-
tonic constraint to EEGC, namely

f ′(I) ≥ 0, I ∈ (0, 1). (8)

With the polynomial kernel in Eq. (7) and some derivations,
it turns out to be∑N

j=1
j · αjIj−1 ≤ −1/ (I log I), I ∈ (0, 1). (9)

From a numerical point of view, this criteria can be turned
into a linear inequality constraint

Cα ≤ d (10)

where the vector α = [α0, α1, · · · , αN ]T corresponds to the
parameters of MEEGC. The matrix C and vector d are defined
as

Ci,j = kÎj−1i ,

di = −1/
(
Îi log Îi

)
,

(11)

where Îi = i
M , i = 1, ...,M − 1 are some discrete locations

where the criteria are evaluated. And N and M resembles
the model order and maximum number of sampled locations,
respectively. And typically M >= 256.

Nevertheless, similar to the constraint involved in
EMoR [30], it is hard to treat these boundary conditions for
non-convex optimization problems. And also, many optimiza-
tion algorithms used in chartless RC, e.g., the fminsearch
or fminunc in Matlab [14, 29], do not accept inequality
constraints. In the next subsection, we would discuss how to
get rid of them by deriving analytical solutions for MEEGCs.

2) The AMEEGCs: To avoid explicit constraints, we need
to derive the analytical solution of MEEGC from Eq. (9).
Although this would be intractable in a general sense, we
found some explicit and approximate AMEEGC’s for low-
order MEEGCs (ord < 3).

i) The 0’th-AMEEGC: It is a trivial case for AMEEGC.
The 0’th MEEGC simply reduce to a gamma curve

f̂0 (I) = Iexp(a), (12)

where a ∈ R is the only parameter of the 0’th-AMEEGC.
ii) The 1st-AMEEGC: The monotone is applied implicitly

by re-writing the 1st-MEEGC into a constraint free form

f̂1 (I) = Iexp[a+(e−b
2)I], (13)

where a, b ∈ R are the two parameters of the 1st-AMEEGC.
e is the natural constant.

iii) The 2nd-AMEEGC: Analogously, the 2nd-AMEEGC
could somehow be derived approximately as

f̂2 (I) = I
exp
[
a+(e−b2)I+

(
b2− c2

2

)
I2
]
, (14)

where a, b, c ∈ R are the three parameters of 2nd-AMEEGCs,
and e is the natural constant.

An obvious advantage of these AMEEGCs over existing
CRF models is that we can adjust their parameters arbitrarily
without breaking the basic rules in Definition 2. In practice,
we found the 2nd-AMEEGC to be a compact yet expressive
representation for ordinary/typical CRFs, as will be addressed
in Section IV.

IV. EXPERIMENTAL VALIDATION

In this section, we conduct a curve fitting experiment to
validate the compactness of the MEEGCs and AMEEGCs
with real-world CRFs. The evaluation dataset is the Database
of Response Functions(DoRF) [25]. As shown in Fig. 1, it
contains 201 CRF curves which covered a wide range of
photographic films, CCD/CMOS sensors, digital cameras, and
some artificial gamma curves (f(I) = Iγ , 0.2 < γ < 2.8).

Fig. 1. The 201 CRFs from the DoRF dataset [25] used as the targets for the
curve fitting experiments.

The performance of each curve fitting experiment is mea-
sured by the approximation error in terms of Root Mean
Squared Error (RMSE)

RMSE =

√√√√ 1

N

N−1∑
j=0

[Oj − f (Ij ;α)]
2
, (15)

where Oj and f (Ij ;α) are the ground truth and approximated
CRF values at Ij = j/N − 1, respectively. For DoRF, we
use N = 1024. Empirically, an RMSE around 0.01 will be
good enough for most chartless RC scenarios. And in non-
ideal cases, the RMSEs would commonly reach up to 0.05.
And the overall performance of a model can be judged by the
distribution of the total RMSEs on DoRF.

Fig. 2 shows the variation of the curve fitting errors with
the model order for each model. More compact models should
have smaller errors at the same order. We can see the overall
performances of MEEGCs and AMEEGCs are among the best
regarding their error bars. Especially, at low-orders (ord ≤ 4),
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the MEGGCs outperformed the EMoR and other existing ana-
lytical models. It also shows that the performance of the 2nd-
AMEEGC is nearly identical to the numerically constrained
2nd-MEEGC.

Fig. 2. Curve fitting performance comparison of the numerically constrained
MEEGCs and the low-order analytical AMEEGCs in Eq. (14) to some existing
models. The box plot shows the variation of the curve fitting errors with the
model order for each model. In each error bar, the central mark indicates
the median of the RMSEs obtained by fitting the 201 CRFs of the DoRF
dataset [25]. The bottom and top edges indicate the 25th and 75th percentiles,
and the outliers are marked with red “+.” The red triangles marked the results
of AMEEGCs which are only available up to the second order.

Fig. 3 gives some detailed examples for the curve fitting
results of the 2nd-AMEEGC. We can see that in most cases,
the 2nd-AMEEGC fitted the CRFs reasonably well (Fig. 3a).
Meanwhile, it would have sightly larger approximation errors
in a few cases when the CRF curves have large curva-
tures (Fig. 3b). Nevertheless, we need to address that such
kinds of CRFs are not commonly seen in modern digital
cameras [31], and also, a moderate approximation error is still
tolerable in many applications.
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Fig. 3. Some examples of the curve fitting results of the 2nd-AMEEGC. (a)
gives some good approximation examples. (b) shows a few cases which have
sightly larger approximation errors. In each subfigure, the solid lines are for
the ground truth fitting target CRFs selected from the DoRF dataset [25].
And the dash lines are the corresponding CRFs reproduced from the 2nd-
AMEEGC coefficients obtained by the curve fitting.

V. APPLIED TO CHARTLESS RADIOMETRIC CALIBRATION

This section applies our 2nd-AMEEGC model to Taka-
matsu’s noise-based chartless RC scenario [14] to demonstrate
how to improve the method’s efficiency by avoiding the
risks of slow convergence and infeasible solutions. Detailed

procedures of their method had been introduced in Sec-
tion II-B. Here, we simply substituted the EMoR model with
the proposed 2nd-AMEEGC and compare their performances
in identical conditions. Detailed experimental configurations
are as follows:

1) Data: We generated some synthetic images to conduct a
large-scale test. It would be appropriate here for our empha-
sis is the efficiency rather than the validity of Takamatsu’s
method [14]. The ground truth images were chosen from
a collection of 20 scenery pictures (1600 × 900 pixels), as
shown in Fig. 4. And a pair of corresponding noisy images
were generated by adding random noise to the ground truth
one. The noise parameters u and v of Eq. (4) were sam-
pled randomly from uniform distributions U(0.01, 0.06) and
U(9, 25), respectively. Finally, a tone mapping was applied
with a CRF randomly picked from the 201 curves of the DoRF
dataset [25]. For each ground truth, this process was repeated
for ten times. So we generated 200 pairs of noisy synthetic
pictures in total. Only the green channels of them were used
for co-occurrence matrices extraction.

Fig. 4. The twenty scenery images of our synthetic image dataset.

2) Model: Takamatsu’s method [14] used the 4th-EMoR
model without any further constraint nor regularization. In
contrast, we will try the 2nd-AMEEGC out here. For both
models, the raw coefficients have undergone a PCA pre-
whitening step to reach the optimum convergence speed. For
example, the whitened EMoR model would become:

g = g0 + GΛc, (16)

where the vector g is the numerical representation of the ICRF
g(O). The vector c resembles the coefficients of the whitened
EMoR. g0 and G = [g1,g2, · · · ,gN ] are the mean vector and
the first N PCA eigenvectors obtained from the numerically
inversed CRFs of DoRF. And the matrix Λ is a diagonal
whitening matrix. Analogously, the whitened 2nd-AMEEGC
coefficients can be obtained analogously with the curve fitting
results in Section IV.

3) Optimization: Takamatsu and Matsushita [14] suggested
that the Nelder-Mead Simplex method [32](implemented by
the fminsearch in Matlab) would be an effective optimization
strategy for their problem. They also adopted an EM-like
strategy to update the parameters of CRF and noise distribution
alternatively. We followed these steps, and the total iteration
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number of EM steps is set to 15. The maximum iteration
number of fminsearch is set to 10. The initial parameters
were fixed for both methods, e.g., the noise parameters were
u = 0.06, v = 1, and the CRF parameters were corresponding
to the identity mapping f(I) = I .

4) Environments: The experiments were run on a PC server
with an Intel 2.6GHz Xeon CPU(12 Cores) and 32GB of mem-
ory. And the GPU attached is the NVIDIA 1050Ti with 8GB
of graphic memory. We implemented Takamatsu’s algorithm
with Matlab and accelerated the numerical integration part in
Eq. (3) with the gpuArray functions.

5) Evaluation Criteria: The performances of different mod-
els were measured from three aspects: 1) the overall conver-
gence speed; 2) the occurrences of infeasible solutions;3) the
overall CRF estimation error in terms of RMSE.

As shown in Fig. 5, the first row (subfigure a-c) gave the
comparison of the 2nd-AMEEGC to the 4th-EMoR. We can
see that the proposed 2nd-AMEEGC model not just converged
faster (Fig. 5a), but also resulted in better CRF estimation
accuracy in terms of RMSE distribution (Fig. 5c). These results
illustrated that the compactness of the 2nd-AMEEGC brought
efficiency without precision loss. Also, we noticed that in this
scenario, both models did not have any infeasible solution, as
shown in Fig. 5b.

Meanwhile, we also gave a comparison to the 2nd-EMoR in
the second row of Fig. 5 (subfigure d-f) for a fair comparison.
As shown in Fig. 5e, about 31% (62/200) of the cases in the
2nd-EMoR model test converged to infeasible solutions judg-
ing by their total variations. When they are ignored, as shown
in Fig. 5d and Fig. 5f, it is fair to say the 2nd-EMoR has a
similar convergence speed and estimation accuracy as the 2nd-
AMEEGC. But when the re-trails for handling those infeasible
cases were also considered, the actual converged speed for
the 2nd-EMoR model would be much worse. These results
revealed another advantage of the 2nd-AMEEGC, which is by
conforming to all the rules in Definition 2, it is immune to the
infeasible solutions.

Overall, these results have clearly shown that neither the
high-order(4th order) EMoR nor the low-order(2nd order) one
is comparable with the proposed 2nd-AMEEGC when used
with Takamatsu’s noise-based chartless RC method.

VI. CONCLUSIONS

In this work, we proposed a EEGC/MEEGC based frame-
work to represent the functional space of CRFs more com-
pactly. Then we showed how to impose implicit monotonic
constraints on EEGC to obtain the 2nd-AMEEGC, which
could compactly represent typical/ordinary CRFs. With all
these efforts, we managed to show that it is possible to derive
CRF models with many virtues: good compactness, extensible,
analytical/closed-form and need no extra constraints to stand
on their own. With the extensive experiments, the superior
compactness of the proposed models was proven under the
DoRF dataset. More specifically, we demonstrated how easily
could the 2nd-AMEEGC be engaged to an existing chartless
RC scenario to improve its performance. In the future, we hope

to explore other possible applications of our method in the
fields of computer vision, high dynamic imaging, and digital
image forensics.
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histograms of both methods. Higher bins near the zero point would be better. Note: for the 2nd-EMoR, the infeasible solutions are excluded from the calculation
of convergence speed and the RMSE distribution, thus its actual performance could be worse.
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