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Abstract—In this age of digital information, most correspon-
dences are now transmitted through online channels, including
private, confidential, and secret messages. Hence, a significant
concern in such correspondence is the threat of eavesdropping.
This work proposes a novel framework of coverless steganog-
raphy by secret representations relabelling and positions scram-
bling to increase the complexity of a secret message encoding.
This is followed by an ACGAN-based model implementation,
namely StArtGAN, that is used in tandem with duotone effects
to construct collage images from the encoded message, so as
to produce a medium of inconspicuous communication. The
decoding process then leverages on the discriminator of the
StArtGAN model as the unique decoder to ensure the integrity
and accurate recovery of the secret message. Investigations in
this paper show that the proposed framework is scalable and
holds potential to reduce the risk of eavesdropping in practical
applications.

I. INTRODUCTION

Steganography conceals external data into a cover such as
image, video, text, audio, etc., for covert communications.
The ability to resist the detection of communication and/or
concealed data from eavesdroppers has been a great concern
in steganography. Besides, there are other important consider-
ations in steganography, including (a) maximizing the size of
hidden data, and (b) resistance to the brute force attack, while
(c) maintaining inconspicuous communication.

There are two major categories of steganography methods
based on the cover utilization, namely cover-based methods
and coverless-based methods. Cover-based image steganogra-
phy method is often heavily dependent on the modification
of the cover image for secret embedding. For instance, Least
Significant Bits (LSB) insertion modifies the right-most bits
of the image pixels to carry binary secret bit [1], [2], [3].
Histogram Shifting (HS) utilizes the peak bin (i.e., histogram
bin with the highest frequency) and the adjacent emptied bin
as the paired-channels to represent secrets [4], [5]. Difference
Expansion (DE) exploits the difference between two adjacent
pixels and appends them according to the secret data [6],
[7]. All these methods modify the image pixels directly and
purposely to carry secret data, which can inevitably leave mod-
ification traces which are prone to detection by steganalysis
tools.

Recent years have seen the proposal of coverless image
steganography, including the non-constructive- [8], [9] and

constructive-based methods [10], [11], [12]. The key ideas in
the aforementioned coverless methods are, the use of the cover
image’s contents for secret representation, or by synthesizing
encoded images from the secret, respectively, both of which
do not modify the cover image. However, the former method
has low embedding capacity due to the limitation of image
contents, i.e., image pixel values, image size, etc. Whilst for
the latter method, the generated embedded images are not
always natural enough to avoid suspicions and attacks.

More recently, research works [13], [14] had attempted the
use deep learning methods, especially Generative Adversarial
Networks (GANs) [15] for coverless steganography by per-
forming encoded images synthesis. Inspired by [13], we theo-
rize that a GAN can synthesize ambiguous and inconspicuous
stego-images, while ensuring a promising secret recovery rate
with resistance to detection from eavesdroppers.

In this paper, we propose a secret encoding framework,
which comprises class-codeword relabelling, position scram-
bling, secret image synthesizing via ACGAN (Auxiliary Clas-
sifier Generative Adversarial Network) [16], and information
hiding using synthesized images in duotone collage image.
Relabelling and position scrambling increase the complexity
of the secret encoding, whereas image synthesis induces an
element of ambiguity into the encoding that would be difficult
for unintentional recipients to decipher. Thus, the chances of
successful unintended analysis of the secret can be greatly
reduced. On top of that, the encoded images are presented in
a duotone collage image, therefore reduce the suspicion of the
generated image, meanwhile ensuring close to 100% secret
recovery.

The main contributions of this work are (1) image synthesis
to represent secret message and specialized classification using
an ACGAN framework as a unique secret encoder-decoder
model named StArtGAN, (2) information hiding via collage of
synthesised images as a medium of transmission, and (3) the
secret message relabelling and secret image position scram-
bling to improve the secrecy and strengthen the resistance to
brute force attack.

II. PROPOSED METHOD

Our model consists of two main operations: secret encoding
and secret decoding processes as illustrated in Fig. 1. In
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TABLE I: Secret message relabelling using K and its corre-
sponding class.

Secret Message Relabelling
Orginal 000 001 010 011 100 101 110 111
Relabel 101 111 110 010 100 011 000 001
Class 5 7 6 2 4 3 0 1

this section, we present our detailed proposed framework and
describe the architecture implemented.

A. Overall Framework

In the encoding phase, the secret message Sµ is transformed
into its binary form Sε based on ASCII Encoding. This binary
secret message is then further transformed by utilizing a user
defined digit representation table R (e.g., Table I) generated
using a key K. We term this operation as relabeling to produce
Sη which will act as part of an input to our image synthesis
model, the Generator G of the ACGAN together with a random
vector z to induce variations into the synthesized images. After
that, the generated secret images Iη will be concatenated into
Iω and converted into a duotone effect collage image IΣ. This
collage image shall be the medium delivered to the intended
recipient.

Following the reception of the collage image is the decoding
process back into the original message. In this process, IΣ will
be recovered to obtain I ′ω and then I ′η , which are fed into a
decoder, specifically the Discriminator D′ of the ACGAN that
transforms I ′η back into a code S′η , where S′η ∼ Sη . This code
will then undergo relabelling using K to transform it back
into the original coding format, S′ε where S′ε ∼ Sε. Finally,
the secret message S′µ can be decoded back to its original
form.

The relabelling step increases the level of complexity that
is harder to be breached by eavesdroppers of the secret
transmission. Moreover, incorporating synthesized image into
the pipeline introduces three additional advantages, they are:
(1) decoding that is only possible with a specifically trained
model, (2) well synthesized encoding images, which in this
context, images that are sufficiently ambiguous and not easily
distinguish in any shape or form, and (3) incorporating photos
effect elements that imparts a natural appearance that do not
arouse the suspicion of eavesdroppers. We further detail the
specifications of each stage of the encoding and decoding in
the subsequent subsections.

B. The Encoding Phase

The secret encoding phase consists of four phases: (a)
secret-to-binary transformation; (b) secret message relabelling;
(c) encoded images synthesis; and (d) duotone collage image
information hiding.

1) secret-to-binary transformation: Secret message Sµ is
the data that the sender wants to send to the recipient covertly
via a public communication channel, and it can be in any form
including text, image, etc. In our proposed method, Sµ will
be first transformed using the following equation:

fe1 (Sµ) −→ Sε (1)

where fe1 is the secret-to-binary translation function and Sε is
the secret message in binary form (viz., 0 and 1 only).

2) Secret Message Relabelling: The transformed Sε is then
divided into log2 Λ bits per group, where Λ is the number of
class in our model. To ease the illustration, Λ = 8 will be
utilized in the following discussion, hence ‖Sη‖ = log28 = 3.

In this phase, random sequences will be generated using
secret key K to relabel the secret message. The first row
of the table indicates the original secret message, while the
second row shows the relabelled message (translated from the
random sequences) in representing the original secret message.
Meanwhile, the third row of the table shows the corresponding
class of each group, which is named as Sη .

fe2 (Sε)
Table R−−−−→ Sη (2)

3) Encoded Images Synthesis: For this use case, we de-
signed an image synthesizer (encoding model) and classifier
(decoding model) based on the ACGAN [16] architecture as
the base design enables the inclusion of our secret code into the
image generation process as well as produce a unique decoder.

ACGAN: Unlike the general GAN architecture where only
a single noise vector z is used to generate synthetic images,
every sample generated by ACGAN has a corresponding class
label, c. Hence, the synthetic image generator model G will
generate the fake sample image Xfake = G(z, c). In the training
stage, the real sample Xreal and G(z, c) are fed into discrim-
inator model D′ where it outputs the probability distribution
indicating if the image is real or fake, P (ζ = {real, fake}|X),
as well as the probability distribution over the classes, P (ρ|X),
hence, D′(X) = P (ζ|X), P (ρ|X). Considering the two tasks,
the objective functions are therefore, the log-likelihood of the
image sources (i.e. real or fake), Lζ , and the log-likelihood of
the image class, Lρ:

Lσ = E[logP (σ = real |Xreal)] +

E [logP (σ = fake|Xfake)]
(3)

Lρ = E [logP (ρ = c|Xreal)] +

E [logP (ρ = c|Xfake)]
(4)

During the minimax training of this model, D′ and G are
trained to maximize Lσ + Lρ and Lρ − Lζ respectively.

StArtGAN: Based on the ACGAN framework, we design
the Steganography Art GAN (StArtGAN) architecture with the
generator as an encoder of secret into images, whereas the
discriminator is the decoder of images back into the secret.
Unlike typical image synthesise GAN models that aim for
realism, the priorities of the StArtGAN are to maximize the
ambiguity of the images generated while still maintaining a
high classification accuracy.

Our Generator, G takes in the class label c and 100-
dimension noise vector z for generation and each forms a
128-channel 50× 50 embedding which are then concatenated
into a 256-channel embedding, as equal balance of the class
information and noise variation to represent the secret. This
embedding then goes through 3 layers of deconvolution that
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Fig. 1: The proposed framework. The upper box illustrates the flow of the encoding process while the lower box shows the
decoding process.

reduces the channels while expanding the spatial dimensions to
form a 32×32 single-channeled grayscale image. On the other
hand, the Discriminator D′ consists of two convolution layers
that branches out into 2 densely connected layers that performs
the classification and discrimination tasks when given the
generated images.

In our context, the input c will be the encoded secret Sη
to synthesize the class image using G. To demonstrate, every
digit in Sη are used to synthesize a grayscale 32 × 32 pixel
images, Iη thus transforming the secret into a series of images.

4) Duotone Effect Collage Image Information Hiding:
Duotone effect is among one of the most widely used photo
editing effects, which implements two contrasting colors to
create a visually pleasing effect in images. The secret images
generated, Iη , are in grayscale, which consists of only 1-
channel.

A total of N ×N Iη secret images are collected and their
sequences are re-ordered by using K. After that, these secret
images are joined together (viz., in raster manner) to form as
a collage image Iω .

At this step, our proposed framework further suggests to
transform the collage image into duotone image and/or overlay
it with another mask M to create an inconspicuous output
image. The purpose of this suggestion is to avoid the attention
by the eavesdropper, especially when the output image is
transmitted via unsecured public communication channel.

The collage image is converted into 3-channel (i.e., RGB
channels) by replicating the channels with same pixel inten-
sities. For instance, an image pixel of value 79 in grayscale
collage image is converted into {79, 79, 79} to represent RGB
channels. Duotone collage image can be easily generated by
zeroing-out the other two channels of sender’s choice. If sender
selected red color as the main color, the RGB channels will
become {79, 0, 0}, and vice versa. Mask M can be overlayed
on top of the 3-channel collage image as an additional alpha
channel. After the duotone collage image overlay process,

output image with hidden data, IΣ, will be sent to the recipient.

C. The Decoding Phase

On the recipient end, the pixel values in IΣ are extracted to
recover the collage image I ′ω , where I ′ω ∼ Iω , assuming that
there is no information loss during the transmission. Since
it is known that the secret images are of size 32 × 32, the
secret images I ′η can be recovered in correct sequences using
K (i.e., the secret key K should be shared by both sender and
recipient), and similarly, I ′η ∼ Iη .

In this phase, the receiver will already have the trained
decoder, D′ to decode the I ′η . D′ can be the same discriminator
D′ from the StArtGAN, i.e. trained with G, or an externally
trained model D̂ using the same settings as D′ and data
samples generated by G. Hence, for every 32 × 32 pixels of
the image I ′η , D′ will perform classification to obtain S′ε.

After that, Table R can then be regenerated by using K as
reference to retrieve the decoded message in binary form S′ε.
The reverse process of Equation 1 are performed to generate
the final decoded secret message S′µ.

Notably in this framework, the decoder is re-useable as long
as the same settings are used to generate the data, therefore,
it will not be necessary to retrain or re-transmit a decoder
from the sender to the receiver. Similar to the secret key, the
receiver will already have the decoder and only the collage
image containing the secret will be sent thus minimizing the
transmission load.

III. EXPERIMENTS AND RESULTS

In our preliminary experiments, the StArtGAN is trained
and tested on a subset of the WikiArt [17] dataset containing
images of art created by notable artists such as Picasso,
Braque, etc. This dataset is selected for its challenging vi-
sual appearance even to a regular person’s observation, thus
allowing the model to generate visually ambiguous image.
It should be noted that the choice of dataset will not have
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TABLE II: Average classification accuracy on 1000 generated
images from each class.

Training Data Model Accuracy

WikiArt

ResNet50 13.60%
MobileNetv2 16.63%
EfficientNet 20.06%

D̂ 18.44%
StArtGAN 99.91%

Synthesized Images

ResNet50 99.81%
MobileNetv2 99.90%
EfficientNet 99.94%

D̂ 91.24%

a significant impact on the accuracy of the decoder as the
learning mechanism will adapt accordingly. Specifically in this
experiment, 8 classes are selected from the WikiArt dataset
with over-sampling to balance the number of images from
each class, totaling to 36443 images with a 80:20 ratio for
training and validation. Adam optimization was employed for
the training with the learning rate of 0.0001 and 0.001 for
Generator and Discriminator respectively.

A. Secret Retrieval Performance

In our experiments we look into the classification accuracy
as evaluation because in this work, the secret retrieval accuracy
is equivalent to the classification accuracy of the Discriminator
D′ when given a generated image. Additionally, we also used
clustering homogeneity to examine if the image classes can be
inferred from a collage image made up of 16×16 synthesized
images. This is to illustrate the scenario, if the collage image
is deconstructed back into individual encoded images, would it
be possible to deduce their classes and subsequently extract the
encoded secret without prior knowledge of the class samples.

1) Classification Accuracy: In the first evaluation, we used
the Generator G to generate a test set of synthesized images
for classification, specifically 1000 images per class. In order
to compare and validate that D′ is distinctly trained for the
classification, we separately trained other classifiers on the
same WikiArt subset as comparison. In particular, we trained
a model D̂ with the same architecture as D′ as well as adapt
the notable ResNet50 [18], MobileNetv2 [19], and Efficient-
Net [20] models through transfer learning. Additionally, we
also include an evaluation of these models trained using the
generated images instead of the original WikiArt data, to
illustrate that separate a classifier can be used as decoder but
only if the samples from the encoder is available for training.
For this, we used G to generate 4560 images for each class
to produce 36480 training images.

As seen in Table II, models that are trained on the WikiArt
dataset has significantly low accuracy which means they will
not be able to decipher the secret (classes) even if the original
training set is known. Separately, their accuracy is on par with
the discriminator D′ of StArtGAN, indicating a possibility of
creating a separate decoder but only if the specific samples
are known and used to train the models.

However, it should be noted that while an accuracy above
90% is highly desirable in most applications, it would be
detrimental for secret decoding as it affects the final retrieved

TABLE III: Average clustering homogeneity of I ′η from 100
sample output images IΣ.

Features Dimensions Homogeneity Score
Pixels 1024 0.6081

PCA

256 0.6083
128 0.6104
64 0.6081
32 0.6177
16 0.6255
8 0.5996
4 0.4447
2 0.2660

secret. Nonetheless, in our framework this can be easily
avoided by a feedback verification through the discriminator
to make sure that the secret image can be classified correctly
before it is selected to be used in the collage image for
information hiding purposes. By adding this additional step,
the secret message can always be decoded correctly during the
decoding phase.

2) Clustering Homogeneity: In this second evaluation, we
create 100 samples of Output Images IΣ, each containing 16×
16 images of 32× 32 pixels generated by G. We then recover
each of the collage image I ′ω and subsequently the generated
images I ′η . We perform clustering on I ′η of each I ′ω and then
evaluate their homogeneity score based on the actual classes
Sη we used to generate the initial collage Iω . We performed
two variations of clustering, the first is by directly using the
1024 pixels of I ′η as the input features, while the second is by
reducing its 1024 pixel dimensions into smaller dimensions
through Principal Component Analysis (PCA). The k-means
algorithm is used for clustering with k-means++ initialization
and the clusters amount is set as 8.

Table III shows the average homogeneity score of the
clustering using the original pixels as well as lower dimensions
ranging from 2 to 256. Homogeneity measures if the clusters
formed contain only the members of a single class. Based
on the results, we can deduce that the clusters in fact do not
contain only single class samples. This indicates a significant
ambiguity of I ′η , thus would pose a considerable challenge
to decipher the secret encoded without the specifically trained
decoder, providing an added advantage against eavesdropping.

B. Embedding Capacity

In the proposed framework as explained in the prior section,
each of the generated secret images will carry log2 Λ bits of se-
cret message in binary form. In our experiments, a scrambled-
collage image joined by 16× 16 generated secret images are
generated. Hence, in this case, the embedding capacity in
the scrambled-collage image is 16 × 16 × log2(8) = 768
bits. However, it is important to note that the embedding
capacity is scalable, as we can flexibly control the size of
the collage image N or the number of class Λ in the model,
to accommodate the secret messages. The embedding capacity
shown in the table is an example to illustrate the application
of the framework.

Besides, more embedding capacity can be carried since the
scrambled-collage image is extended to three channels. In
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TABLE IV: Embedding capacity comparison.

Method Absolute Capacity
Method in [8] 8 bits

Method in [10] 1536 bits
Method in [11] 4480 bits
Method in [12] 1600 bits
Method in [14] 300 bits
Method in [9] 80 bits

Method in [13] 4 words
Method in [21] 2 words

Proposed Method 768-2304 bits*
* embedding capacity is scalable.

our experiments, two channels and three channels embedding
are also explored to carry two times and three times of the
calculated embedding capacity in the previous paragraph.

The embedding capacity of the proposed method and the
related works are summarized in Table IV. From the table,
the proposed method shows good performance in terms of
the embedding capacity, since the embedding capacity can
be controlled by using parameters N and Λ, as well as the
utilization of multiple channels after applying duotone effect.

C. Image Quality

Figure 2 shows the output images of the embedding process
in the proposed framework. On the first row of the figure, four
scrambled-collage images I{1,··· ,4}Σ , are generated using four
distinctive sets secret images generated from our model. The
following rows of output images are the extended images with
duotone and/or overlay effect(s) using these IΣ.

In the proposed framework, additional effects are suggested
to enhance the inconspicuous level of the output images. The
first effect that applied to the IΣ is the duotone effect. Second
row of Fig. 2 demonstrate the 1-channel to 3-channel image
mode extension of the scrambled-collage images. On Fig. 2(e)-
(g), either one of the channel, i.e., red, green or blue channel,
is utilized respectively to carry the scrambled-collage image
(viz., which also represents the secret images), while the
intensities of other two channels are replaced with zero values.
This create red, green and blue duotone scrambled-collage
images. If different color of duotone is desired (apart from
the sharp red, green and blue), the zero-ed out channels can
be fine-tuned to create the desired duotone color effect, e.g.,
Fig. 2(h) shows the output of embedded red channel and fine-
tuned blue channel.

We also explored the possibilities of embedding more
capacity by using the proposed framework, since there are
available spaces after the duotone effect. Hence, double capac-
ity embedding on two channels and triple embedding capacity
on three channels are tested and the output images are as
shown in Fig. 2(i)-(l).

Finally, the experiment is completed by applying overlay
effect on the duotone scrambled-collage image to enhance
the aesthetic level of the output images. The output images
shown in Fig. 2(m)-(p) are the examples of the overlay
effect. The duo-tone output image with overlay effect, viz.,
in RGBA format, is a possible medium to produce an image
to carry the secret inconspicuously. Alternative methods can

(a) I1
Σ (b) I2

Σ (c) I3
Σ (d) I4

Σ

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 2: Output images with hidden data generated by the
proposed framework. First row shows four scrambled-collage-
images, I1

Σ, I
2
Σ, I

3
Σ, I

4
Σ, joined by using four different sets of

generated secret images. Second row shows the duotone effect
by using the proposed framework on different channels, in par-
ticular, (e) shows red duotone effect, (f) and (g) shows green
and blue duotone effects, while (h) shows red duotone and fine
tune on blue channel. Third row shows the outcome images if
double capacity embedding is applied on two channels (refer
to (i) - (k)) and triple capacity is applied on three channels
(refer to (l)). Last row ((m) - (p)) shows the output images
with various overlay effects.

be applied for this purpose, but essentially the secret is in
the 1-channel image generated from the StArtGAN. Other
arrangements, effects or masking can also be applied to the
secret images, scrambled-collage image or the duotone image
to accommodate the environment and communication needs.
Nevertheless, based on our subjective point of view, the final
output images show that the proposed framework can achieve
the goal of coverless image steganography, which aims at
producing inconspicuous output image with hidden data.

For the output image quality evaluation, objective measures
are not applicable to this framework because this is a coverless
steganography method hence there is no reference image to
perform quality comparison on quality metrics such as PSNR
and Structural Similarity (SSIM). Secondly, non-reference
quality metrics evaluate the naturalness of realistic images,
however the images produced in this framework are more
towards artistically edited images, thus the evaluation would
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(a) Secret Images (b) Recovered Se-
cret Image

(c) Pixel Intensities
Difference

Fig. 3: The difference of the generated and recovered secret
images are compared and displayed in (c).

not be suitable with these measures as well.
The recovered secret images are compared with the original

secret images to prove the recovery performance. As shown
in Fig. 3, their pixel intensities difference appear in black,
indicates the recovered image is identical to the original secret
image.

The PSNR value and SSIM index are used as a referential
evidence for quality evaluation for distortion of the restored
image. The PSNR expressions are given below.

PSNR = 10× log
(

2552

MSE

)
MSE = 1

mn

∑m
i=1

∑n
j=1(x(i, j)− y(i, j))2

(5)

The SSIM expression is given below.

SSIM(x, y) =
(2µxµy + c1) (2σxy + c2)

(u2
ir + u2

u + c1) (σ2
r + σ2

u + c2)
(6)

As a result, the PSNR and MSE values between the two images
are infinity, indicating that both images are exactly identical.
Therefore, we can conclude that full recovery in the collage
process can be achieved by using our proposed method.

IV. CONCLUSION

In this work, we proposed a framework to increase the
secrecy of encoded message through relabeling, scrambling
and image synthesis. We demonstrated that image synthesis by
our StArtGAN model is not only able to construct images from
a secret message as a medium of covert communication, but
the discriminator of the model can act as a dedicated decoder
for accurate message recovery. Our framework is scalable by
various number of classes, various size of the collage image
and various channels can be utilized to control the embedding
capacity. In the future, we intent to focus on enhancing the
security of the proposed model and perform more study and
comparison with other relevant works.
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