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Abstract—In narrowband Internet of Things (NB-IoT) net-
works, a base station can provide multiple coverage enhancement
(CE) levels to accommodate devices with diverse channel qualities
for achieving massive connections. The base station can determine
a narrowband physical downlink control channel (NPDCCH)
period (NP) for each CE level. The base station should allocate
uplink and downlink radio resources on an NP-basis for each
device in a CE level. The NP length of each CE level significantly
affects the efficiency of uplink and downlink radio resource
allocation. However, the key challenge in determining an NP
length for each CE level is that the NP length should be
decided before the uplink and downlink resource allocation and
cannot be frequently changed. Therefore, this paper studies the
NPDCCH period adjustment problem considering uplink and
downlink traffic. The objective is to minimize the radio resource
consumption while each device can transmit or receive its data. To
overcome the above issue, we propose an algorithm based on deep
reinforcement learning to solve the target problem. Compared
with the two baselines, the simulation results show the efficacy
of the proposed algorithm and useful insights into the design of
the NPDCCH period adjustment algorithm for NB-IoT networks.

Index Terms—NB-IoT, NPDCCH period, deep reinforcement
learning, cellular networks

I. INTRODUCTION

The 3rd generation partnership project (3GPP) has spec-
ified the narrowband Internet of Things (NB-IoT) protocol
to support massive IoT devices for cyber-physical systems
in fifth-generation (5G) cellular networks [1]–[3]. A cellular
base station should serve 480,000 devices [4], and Cisco
forecasts that 29.3 billion mobile-connected devices will be
in use by 2023 [5]. The amount of data to be collected and
transmitted is expected to increase at an exceptional rate [6].
Bursty devices (sensors) may simultaneously send data packets
to a base station. Therefore, achieving efficient use of the
radio resources of NB-IoT networks for massive connections
is crucial.

A base station can provide multiple coverage enhancement
(CE) levels to accommodate devices with diverse channel
qualities to accomplish high coverage and extensive connec-
tion requirements in NB-IoT networks. The base station can
determine a narrowband physical downlink control channel
(NPDCCH) period (NP), which consists of an NPDCCH and
a narrowband physical downlink shared channel (NPDSCH)
in downlink frequency for a CE level. The base station should
allocate radio resources on an NP-basis for each device in a

CE level. No matter whether uplink or downlink transmissions,
a device should blindly decode a downlink control indicator
(DCI) in an NPDCCH search space. Then the device can
receive data in the NPDSCH or transmit data in a narrowband
uplink shared channel (NPUSCH). An NP length comprised of
NPDCCH length and NPDSCH length significantly affects the
efficiency of the uplink and downlink radio resource allocation.
Therefore, determining a suitable NP length for each CE
level is critical and refers to the NPDCCH period adjustment
problem. However, the key challenge when it comes to deter-
mining an NP length for each CE level is that the NP length
should be decided before the uplink and downlink resource
allocation and cannot be frequently changed. Tackling this
problem would result in a Markov decision process (MDP)
with large state and action spaces.

Recently, the uplink resource allocation algorithms for NB-
IoT cellular networks have been proposed in [7], [8], and
[9]. Feltrin et al. [10] surveyed the downlink and uplink
frame structures and procedures for 3GPP NB-IoT networks.
Further, Mostafa et al. [7] investigated the joint subcarrier
and transmission power allocation problem to maximize the
number of low-cost machine-type communication devices,
satisfying a desired quality of service. Hsieh et al. [11]
proposed a DCI and subcarrier allocation algorithm for uplink
transmissions. In [9], Yu et al. considered narrowband physical
random access channels (NPRACHs) in the link adaptation
and uplink resource allocation problem. They proposed an
uplink resource allocation algorithm based on a dynamic
programming approach to solve the problem. The downlink
resource allocation algorithms for NB-IoT networks have been
investigated in [12] and [13]. Huang et al. [12] identified
radio resource scheduling issues for NB-IoT systems and
proposed a downlink scheduling algorithm for NB-IoT. In [13],
Yu proposed an approximation algorithm for the downlink
resource allocation problem. The current paper considers that
both uplink and downlink resource allocation algorithms are
given and can be applied no matter which resource allocation
algorithm is adopted for NB-IoT.

The NPDCCH period adjustment problem has been studied
in [13]. In [13], Yu proposed a heuristic algorithm to determine
an NP for each CE level. The algorithm selects the shortest
NPDCCH length that can fulfill the required DCI repetition
requirements of all devices and the shortest NPDSCH length
that can satisfy the required data repetition requirements of
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all devices in a CE level. The algorithm is designed only
considering downlink resource allocation, but none simulta-
neously considers uplink and downlink resource allocation.
Because uplink and downlink devices should share the same
NPDCCH resource pool, the NPDCCH period adjustment
problem should simultaneously consider uplink and downlink
traffic.

In this paper, we investigate the NPDCCH period adjust-
ment problem with the consideration of uplink and down-
link transmissions in NB-IoT networks. The objective is to
minimize the total consumed subframes for satisfying the
uplink and downlink data requirements of bursty devices. We
summarize the contributions of the present paper as follows.
• This paper completely considers uplink and downlink

frame structures and traffic for the NPDCCH period
adjustment problem. In the frame structures, we also
practically consider the essential signals and NPRACHs.

• We build the reinforcement learning settings including
the observation selection, action selection, and reward
function for the target problem. Then, given an uplink and
downlink resource allocation algorithm, we propose an
algorithm based on deep reinforcement learning to solve
the target problem.

• We conduct a series of simulations to evaluate the perfor-
mance of the proposed algorithm. The proposed algorithm
is compared using a static method [12] and a baseline
designed by [13]. The simulation results show that,
compared with the two baselines, our proposed algorithm
can reduce the radio resource consumption. The simula-
tion results justify that the NPDCCH period adjustment
algorithm design should simultaneously consider uplink
and downlink resource allocation, while the results also
illustrate an interesting phenomenon, specifically that in
determining an NP length there exists a trade-off between
the NPDCCH and NPDSCH subframe consumption.

The remainder of this paper is organized as follows. In
Section II, we describe the system model and problem formu-
lation. In Section III, we detail the proposed algorithm. Section
IV presents simulation results before we conclude this paper
in Section V.

II. MODELING AND PROBLEM FORMULATION

A. System Model

This paper considers a single NB-IoT cell serving a set of
static NB-IoT devices with uplink and/or downlink transmis-
sion requirements. When a device has downlink traffic (e.g.,
remote reconfigurations of IoT devices, firmware, or software
updates) or uplink traffic (e.g., environmental monitoring,
or fire alarms), it will receive system signals (e.g., master
information block and narrowband primary/secondary syn-
chronization signals). The device will determine its associated
CE level by comparing the received power of the broadcast
signal to the predefined thresholds of the reference signal
received power [14]. The device will then perform the random
access procedure according to the predetermined configuration

of the associated CE level in the NPRACH. When the device
has successfully completed the random access procedure, the
base station can select an appropriate NP determined by two
parameters, Rmax and G, for each CE level in the radio
resource control connection setup. Each device with different
repetition requirements (channel qualities) should transmit or
receive data in the defined NP length of its associated CE
level.

In determining an NP length, there exists a trade-off be-
tween transmission reliability and transmission time-interval.
Because three CE levels’ devices should share the same
radio resources including uplink and downlink resources, the
resource allocation efficiency will be significantly affected
by three NP lengths of three CE levels. However, the key
challenge for determining the three NP lengths of three CE
levels is that the three NP lengths should be decided before
the uplink and downlink resource allocation and cannot be
frequently changed. Tackling this problem would result in an
MDP with large state and action spaces. This paper adopts
the view that the bursty devices have completed the CE level
determination and the random access procedure. We target
how to determine an NP for each CE level such that a given
downlink and uplink radio resource allocation can consume
the minimum radio subframes for satisfying the uplink and
downlink data requirements. Readers can refer to [9] and [13]
for background knowledge about the uplink and downlink
resource allocation of NB-IoT.

B. Problem Formulation

This paper considers that a base station serves a set of
V connected NB-IoT devices under L CE levels. The set of
devices in the CE level ` is denoted as V `, V `

⋂
V `+1 = ∅.

The set of V ` devices incudes |V `U | devices with uplink
requests and |V `D| devices with downlink requests. Device v
in CE level ` has a data requirement of size ψ`v .

The SNR between the base station and device v is ηv .
To guarantee the required transmission reliability, device v
requires the minimum data repetition number to be R̂v under
the measured SNR. A set of repetition numbers <U and <D
can be chosen by the base station for uplink and downlink
data transmissions, respectively. The base station should select
a repetition number satisfying Rj ≥ R̂v , Rj ∈ <U for uplink
and Rj ∈ <D for downlink.

The length of an NPDCCH period for the CE level ` is
R`max ×G`. Parameter Rmax can be selected from set Rmax
and determines the number of NPDCCH subframes in an
NPDCCH period. Parameter G is a system parameter and can
be chosen from set G. The required DCI repetition number of
device v to guarantee transmission reliability is at least D̂v .
There is a set of repetition numbers <DCI that can be selected
for transmitting a DCI. The repetition number to transmit one
DCI should also ensure the reliability (i.e., Rj ∈ <DCI ≥ D̂v).
In other words, if a device v requires a higher D̂v , the base
station may require to select a higher Rmax to increase Rj .

Under the selected R`max and G` values for CE level `, a
given uplink and downlink resource allocation will consume
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TABLE I
SUMMARY OF NOTATIONS

Symbol Description

L The number of CE levels
V The set of NB-IoT devices
V ` The number of devices in CE level `
ψ`
d The data requirement of device v in CE level `

R̂v The data repetition requirement of device v

<D
The set of data repetition numbers can be selected by a
base station for downlink transmissions

<U
The set of data repetition numbers can be selected by a
base station for uplink transmissions

R`
max The number of NPDCCH subframes for CE level `

Rmax The set of Rmax values

G` The system parameter for determining an NPDCCH
period for CE level `

G The set of G values

<DCI
The set of DCI repetition numbers can be selected by a
base station for transmitting a DCI

D̂v The required DCI repetition number of device v

C`
U

The number of consumed subframes under a given re-
source allocation algorithm for satisfying the devices’
uplink data requirements in CE level `.

C`
D

The number of consumed subframes under a given re-
source allocation algorithm for satisfying the devices’
downlink data requirements in CE level `.

C`U subframes to satisfy the uplink data requirements of
|V `U | devices and C`D subframes to satisfy the downlink data
requirements of |V `D| devices. The objective of this paper is
to minimize the number of consumed subframes to serve V
devices for uplink and downlink transmissions by determining
R`max and G` values for each CE level. The problem can be
formulated as the optimization

min
R`

max,G
`

L∑
`=0

C`U + C`D. (1)

The notations used in this paper are summarized in Table I.

III. NPDCCH PERIOD ADJUSTMENT

In this section, the reinforcement learning settings, including
observation selection, action selection, and reward function,
are introduced in Section III-A. Subsequently, the deep Q-
learning-based NPDCCH period adjustment algorithm is pro-
posed in Section III-B.

A. Reinforcement Learning Settings

In Section III-A, we adopt the deep Q-learning (DQN)
algorithm, which consists of a deep neural network (DNN)
phase and Q-learning phase, as our reinforcement learning al-
gorithm. The Q-learning phase is a value-based reinforcement
learning approach [15], where a value function Q(s, a) is used
to determine an action a for the state s such that a reward is
maximized. In the deep Q-learning algorithm, a Q-agent needs
to explore the environment (system state) to select suitable
actions for our optimization goal. The Q-agent observes the
current state St corresponding to a set of previous observations
O`t = {O`t−1, O`t−2, ..., O`0} for CE level ` at the start of the
t-th time-interval. During a time-interval, the determined NP

length of each CE level cannot be changed. In other words, a
time-interval can be set according to the required NPDCCH
period adjustment time frame. Based on the knowledge of the
state St, the Q-agent can choose an action At in the action set
A. Therefore, selecting appropriate observations and actions
is important for learning performance.

1) Observation Selection: We design observed information
O`t = [R`D,R`U , φ`D, φ`U ].

R`D = {N `,1
D , ..., N `,j

D , ..., N
`,|<D|
D } (2)

N `,j
D is the number of devices with downlink data requests in

CE level `, whose data repetition requirements can be satisfied
by the repetition number Rj ∈ <D.

R`U = {N `,1
U , ..., N `,j

U , ..., N
`,|<U |
U } (3)

N `,j
U is the number of devices with uplink data requests in

CE level `. The devices’ data repetition requirements can be
fulfilled by the repetition number Rj ∈ <U .

φ`D = {ϕ`,1D , ..., ϕ`,jD , ..., ϕ
`,|<D|
D } (4)

ϕ`,jD is the total number of devices’ downlink data require-
ments in CE level ` where the devices’ data repetition require-
ments can be fulfilled by the repetition number Rj ∈ <D.

φ`U = {ϕ`,1U , ..., ϕ`,jU , ..., ϕ
`,|<U |
U } (5)

ϕ`,jU is the total number of devices’ uplink data requirements
in CE level ` when the devices’ data repetition requirements
can be fulfilled by the repetition number Rj ∈ <U .

2) Action Selection: Because we should determine R`max
and G` values for each CE level `, the action set is

A = {[R0
max, G

0], ..., [R`max, G
`], ..., [RLmax, G

L]}. (6)

The action set is obviously a large action space. In order to
reduce the computational complexity, we separate the action
set A into L sets (CE levels), i.e., A` = {[R`max, G`]},
∀R`max ∈ Rmax and G` ∈ G. Moreover, because some
Rmax values are not suitable for a CE level, we should select
appropriate actions for each CE level to avoid the evil actions.
For example, Rmax = 2 is not adequate for CE level 2 because
the DCI repetition requirements of the devices in CE level
2 generally cannot be satisfied by two NPDCCH subframes.
Rmax = 2048 is not proper to CE level 0 because the devices
with high channel qualities in CE level 0 only require low
repetition numbers and a long NP is not necessary. Therefore,
the action set for each CE level should be different. We set
2 ≤ R0

max ≤ 32 for CE level 0, 8 ≤ R0
max ≤ 128 for CE

level 1, and 64 ≤ R0
max ≤ 1024 for CE level 2.

3) Reward Function: We focus on minimizing the total
uplink and downlink subframe consumption as our objective.
Therefore, the reward function for CE level ` during t-th time-
interval is defined as:

ω`t =
1

C`U + C`D
(7)

Fig. 1 shows the multiple DQN agents and our environment
model. We set a DQN agent with a weight of θ` for CE level `.
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Fig. 1. Three DQN agents for three CE levels and environment interaction.

Algorithm 1: DQN-based NPDCCH period adjust-
ment
Input: L, V , <D, <U ,Rmax, G, ψ`d

1 for t = 0 to T do
2 for ` = 0 to L do
3 O`t = [R`D,R`U , φ`D, φ`U ]
4 if Pε < ε then
5 Choose a random action a`t from the set A`

6 else
7 a`t = arg max

a`t∈A`
Q(St, a

`
t, θ

`)

8 The selected action a`t is used for a given
uplink and downlink resource allocation
algorithm to get the reward ω`t

9 Store (O`t , a
`
t, ω

`
t , O

`
t+1) in the memory

10 Using Eq. (8) and RMSProp to update θ`

11 if t mod Z = 0 then
12 Update target Q-network θ′` = θ`

The multiple DQN agents are trained in parallel at each time-
interval. Each agent of CE level ` will decide an action a`t from
the set A`. The selected action a`t is used for a given uplink
and downlink resource allocation algorithm. After executing
the algorithm, we can obtain the reward of each CE level ` at
t-th time-interval and a set of observations O`t+1 for each CE
level `. Then, [O`t , a

`
t, ω

`
t , O

`
t+1] are stored in the memory for

each CE level `.

B. DQN-based NPDCCH Period Adjustment

The training algorithm for the DQN-based NPDCCH period
adjustment algorithm is shown in Algorithm 1. The training
algorithm will be trained during T time-intervals (Lines 1-
12). At t-th time-interval , we obtain the observed information
O`t = [R`D,R`U , φ`D, φ`U ] according to Eq. (2)-Eq. (5) for CE
level ` (Lines 2-3). In the proposed algorithm, an action is
selected based on the ε-greedy algorithm, which is comprised
of exploration and exploitation [16]. In Line 4, ε is a predefined
threshold, and Pε is a random number which is generated
at each time-interval. When Pε < ε, an action is selected
by exploration. The Q-agent randomly selects an action a`t
from the set A` (Lines 4-5). Otherwise, an action is picked
by exploitation. The Q-agent selects the best action a`t =

arg max
a`t∈A`

Q(St, a
`
t, θ

`) according to the previous observations,

actions, and rewards at the current state St (Lines 6-7). Note
that when the training procedure is finished, ε is set to 0, and
we will not use the exploration phase.

The selected action a`t is used for a given uplink and
downlink resource allocation algorithm for CE level `. We
can obtain the reward ω`t including the number of consumed
subframes for satisfying the data requirements of uplink and
downlink transmissions (Line 8). Values [O`t , a

`
t, ω

`
t , O

`
t+1] are

stored in the memory. In Line 10, the weight θ` is updated
along each training time-interval using the following function
[17].

E(θ`) =

∣∣∣∣∣
(
ω`
t + γ max

a`
t+1∈A`

Q(St+1, a
`
t+1, θ

′`)

)
−Q(St, a

`
t , θ

`)

∣∣∣∣∣
2

, (8)

where γ is RMSProp learning rate [18]. Based on the gradient
of the loss function E(θ`), we update θ`. We update target Q-
network θ′` = θ` every Z time-interval (Lines 11-12).

IV. PERFORMANCE EVALUATION

A. Simulation Setups

In this section, our simulation settings are based on realistic
parameters according to 3GPP specifications [3], [19]. The
proposed algorithm, namely the DQN-based NPDCCH Period
Adjustment (DNPA), is compared with two baselines. The first
baseline, named static scheme, uses a fixed pair of Rmax and
G values, set by [12]. Specifically, Rmax = 8 and G = 4
are used for CE level 0. Rmax = 32 and G = 4 are used
for CE level 1. Rmax = 256 and G = 2 are set for CE level
2. The second baseline, named NPDCCH period adaptation
(NPA), chooses the smallest Rmax and G values that can fulfill
the required DCI repetition and required data repetition of all
devices in a CE level [13].

We consider a single base station serving a number of
devices using an uplink and downlink resource allocation
algorithm. The adopted uplink and downlink resource allo-
cation algorithm first allocates radio resources for downlink
and then for uplink. The algorithm sequentially allocates each
NPDCCH subframe with each scheduling delay value to find
an unused NPDSCH/NPUSCH start subframe for a device that
has not been satisfied and served in the NP. The algorithm
allocates continuous NPDSCH/NPUSCH subframes to the
device. For uplink resource allocation, because multi-tones are
supported, the algorithm will additionally try each resource
unit and each modulation-coding index for each device to find
unused radio resources.

We now describe our simulation settings. The RMSProp
learning rate γ is set as 0.9. The exploration threshold ε is
set at 0.1. The number of bursty devices, which complete the
random access procedure, varies from 3,000 to 6,000 in a time
interval [14]. Each device randomly selects a downlink or an
uplink data request. The uplink or downlink data size of each
device is randomly selected from 20 bytes to 200 bytes [12].
The transmission power of the base station and each device is,
respectively, 32 dBm and 23 dBm [8]. The pass loss model is
120.9 + 30.76 log(d) dB, where d is in kilometers [8]. Each
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Fig. 2. The impacts of the number of devices on the number of total
consumed subframes.

device is randomly placed at a distance d between [500, 4000],
[4001, 7500], and [75001, 12000] meters from the base station
for CE level of 0, 1, and 2, respectively. Each device’s signal-
to-noise ratio can be derived based on the path loss model,
the used resource unit, and its distance d.

The repetition number for uplink data can be selected from:
1, 2, 4, 8, 16, 32, 64, or 128. The repetition number for
downlink data can be selected from one of the values 1, 2, 4, 8,
16, 32, 64, 128, 192, 256, 384, 512, 768, 1024, 1536, or 2048.
The repetition number for transmitting a DCI can be selected
from Rmax/8, Rmax/4, Rmax/2, and Rmax. The set of Rmax
values is {8, 16, 32, 64, 128, 256, 512, 1024, 2048}. The set of
G values is {1.5, 2, 4, 8, 16, 32, 48, 64}.

In this simulation, we also consider the signals and
NPRACHs. A narrowband physical broadcast channel oc-
cupies the subframe with index 1 of every radio frame.
Narrowband primary synchronization signals use the subframe
with index 6 of every radio frame. Secondary synchronization
signals reside at the subframe with index 10 every 20 ms. We
set three NPRACHs configured as follows: 48 subcarriers, one
repetition, 320 ms periodicity; 24 subcarriers, 16 repetitions,
1280 ms periodicity; and 12 subcarriers, 256 repetitions, 2560
ms periodicity.

B. Simulation Results

Fig. 2 evaluates the effect of the number of devices on
the number of total consumed subframes for the three CE
levels. The total consumed subframes include uplink sub-
frames and downlink subframes. As the number of bursty
devices increases, the number of consumed subframes also
increases, because more devices will have more uplink and
downlink data requests. The proposed DNPA can select a
suitable pair of Rmax and G values for each CE level such that
a given uplink and downlink resource allocation algorithm can
consume fewer subframes to satisfy the uplink and downlink
data requirements. The Static method and NPA have similar
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Fig. 3. The impacts of the number of devices on the number of consumed
NPDCCH subframes.

performance in terms of the total subframe consumption. The
simulation result justifies that the NPDCCH period adjustment
considering both downlink and uplink is important.

Fig. 3 investigates the effect of the number of devices on
the consumed NPDCCH subframes. As shown in Fig. 3, when
the number of devices increases, the number of used NPDCCH
subframes increases. Because each device needs to receive a
DCI in NPDCCH subframes, no matter whether an uplink or a
downlink request, the base station should allocate more DCIs
to schedule the devices. The decided Rmax value will have a
great impact on the NPDCCH subframe consumption. Our pro-
posed DNPA consumes the fewest NPDCCH subframes, while
the Static method consumes the most NPDCCH subframes
because the Static method does not consider the devices’ DCI
repetition requirements to determine the Rmax value for each
CE level so that the Rmax value is higher under the Static
method. NPA consumes fewer NPDCCH subframes than the
Static method because NPA finds the smallest Rmax value that
can satisfy the devices’ DCI repetition requirements in each
CE level.

Fig. 4 shows the effect of the number of devices on the
consumed NPDSCH subframes. Comparing Fig. 3 and Fig.
4, although the Static method consumes the most NPDCCH
subframes, we can see that the Static method consumes
the fewest NPDSCH subframes. However, a low NPDSCH
subframe consumption does not mean that the total consumed
subframes can be minimized. The proposed algorithm can
still minimize the total subframe consumption as shown in
Fig. 2. In terms of the total downlink subframe consumption
including the NPDCCH and NPDSCH subframes, NPA can
still outperform the Static method. This simulation result finds
an interesting phenomenon, namely that there exists a trade-off
between the NPDCCH and NPDSCH subframe consumption
in determining Rmax and G values. Therefore, we should
balance the NPDCCH and NPDSCH subframes according to
the repetition and data requirements of devices.
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Fig. 4. The impacts of the number of devices on the number of consumed
NPDSCH subframes.

V. CONCLUSION

In this paper, we have studied the NPDCCH period ad-
justment problem considering uplink and downlink frame
structures for NB-IoT cellular networks. The objective is to
minimize the number of consumed subframes for satisfying the
data requirements of both uplink and downlink. We formulate
the target problem as an optimization problem. To solve the
problem, we first create the reinforcement learning settings
and then propose a DQN-based NPDCCH period adjustment
algorithm. The simulation results demonstrate that, compared
to a previous NPDCCH period adaptation approach and a
static algorithm, the proposed algorithm is very effective
in reducing the radio resource consumption, especially for
NPDCCH subframes. The simulation results also reveal an-
other phenomenon, specifically that there exists a trade-off
between the NPDCCH and NPDSCH subframe consumption
in determining Rmax and G values.
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