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Abstract—In this paper, we introduce an inhibition model of
future malware diffusion. The literature has predicted that new
types of malware that discovers vulnerabilities of normal hosts
with the use of the computational resources of infected host will
appear in the near future. The infectability of such malware
is incomparably high. One of strategies inhibiting the diffusion
of the future malware is that we protect the normal hosts by
discovering the vulnerabilities before the malware discovers them.
The inhibition model in this paper represents the dynamics of the
malware diffusion based on an evolutionary game theory under
situations where we adopts this strategy. Through numerical
calculations, we clarify the behavior of the inhibition model.

I. INTRODUCTION

In recent years, researches on machine learning has been

actively conducted and applied to various fields. There ex-

ist some researches that discover vulnerabilities in software

with the use of machine learning to protect software against

malware [6], [8]. Furthermore, to enhance the performance of

the machine learning technology, distributed machine learning

methods using the computing resources of a large number of

inexpensive computers have been developed in the past [5],

[7]. These machine learning technologies can be exploited to

malicious attacks. Based on these facts, in [3], the authors

have introduced a new concept of future malware named self-

evolving botnets. They discover vulnerabilities by means of

distributed machine learning with the use of the computing re-

sources of infected hosts. By using discovered vulnerabilities,

susceptible hosts could get infected and then are embedded

into the self-evolving botnets. The authors have provided an

epidemic model that represents the infection dynamics as a

continuous-time Markov chain. They have shown that the

infectability of the self-evolving botnets is too strong and

suggested that urgent measures are required.

In [2], an epidemic model that represents the spread of the

recently emerged COVID-19 epidemic, taking into account the

behavior of people, has been introduced. This model adopts an

evolutionary game theory, which can analyze dynamic behav-

ioral changes, to represent the proportion increase/decrease in

people with complex behaviors. Furthermore, the authors have

examined how the behavior of people suppresses the spread of

the virus. The idea of the epidemic model that counters virus

spreading by taking into account the behavior of people can

be applied to malware spreading on computer networks.

In this paper, we propose an inhibition model with an

evolutionary game theory for countering the diffusion of self-

evolving botnets. In the proposed model, we assume that there

exists a countermeasure group. The group aims to protect

normal hosts by discovering vulnerabilities with the use of

the computing resources of members in the group before

the botnet malware discovers them. The inhibition model

represents the dynamics of the malware diffusion based on the

evolutionary game theory that considers the selfish behavior

of hosts under situations where there exists the countermea-

sure group. Through numerical calculations, we examine the

fraction of hosts that join/leave the countermeasure group and

the change in the fraction of infected hosts.

II. EPIDEMIC MODEL OF SELF-EVOLVING BOTNETS

In [4], an epidemic model representing the infection dy-

namics of self-evolving botnets has been introduced to clarify

their infectability. In what follows, we describe the epidemic

model briefly.

In the epidemic model, the state of each host in a net-

work is represented by the Susceptible-Infected-Recovered-

Susceptible (SIRS) model shown in Fig. 1, where “S” indicates

that the host has vulnerabilities, “I” indicates that the host is

infected with the botnet malware, and “R” indicates that the

host has no known vulnerabilities. The transitions between the

states occur according to the following events:

1) Susceptible hosts could get infected with the botnet

malware, and then transition to state I.

2) Susceptible hosts and infected hosts transition to state R

when they repair their vulnerabilities and eliminate the

botnet malware from themselves, respectively.

3) Hosts in state R transition to state S when the botnet

malware discovers a new vulnerability.

Let S(t), I(t), and R(t) denote the fraction of the numbers

of hosts belonging to states S, I, and R, respectively, at time t,
where S(t)+I(t)+R(t) = 1. The epidemic model represents

the infection dynamics with the following ordinary differential
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Fig. 1. SIRS model.

equations:

d

dt
S(t) = −αS(t)I(t) + ηI(t)R(t)− δsS(t), (1)

d

dt
I(t) = αS(t)I(t)− δiI(t), (2)

d

dt
R(t) = δsS(t) + δiI(t)− ηI(t)R(t), (3)

where α, δi, η, and δs are parameters denoting the malware

infection rate, the malware elimination rate, the new vulnera-

bility discovery rate, and the repair rate, respectively. The self-

evolving botnets exploit the computing resources of infected

hosts to discover new vulnerabilities. In (1) and (3), the term

ηI(t)R(t) represents this ability, the performance of which

is proportional to the number I(t) of infected hosts. As a

result, the infectability of the self-evolving botnets becomes

too strong, and thus it is difficult for each host to counter

against the botnet malware individually.

III. INHIBITION MODEL OF SELF-EVOLVING BOTNETS

A. Inhibition modeling

The inhibition model proposed in this paper assumes that

there exists a countermeasure group in a network. The coun-

termeasure group consists of some hosts in the network, which

are called member hosts hereafter. It discovers vulnerabilities

with the use of computing resources of member hosts in the

countermeasure group before the botnet malware discovers

them. It then shares the information on the vulnerabilities

with other hosts in the network, so that the countermeasure

group can protect the hosts and counter the botnet malware.

The inhibition model represents the infection dynamics of the

botnet malware under the following assumptions:

1) One countermeasure group exists in the network.

2) Any host in the network can participate in the counter-

measure group.

3) Member hosts can withdraw from the countermeasure

group freely.

4) The vulnerability information discovered by the counter-

measure group is shared with all the hosts in the network

and repaired immediately.

Fig. 2 shows the state transitions of each host in the

inhibition model, which is an extension of the SIRS model

shown in Fig. 1. In this model, each host can belong to six

states: “S1”, “S2”, “I1”, “I2”, “R1”, and “R2”. States Sn,

In, and Rn (n ∈ {1, 2}) denote susceptible, infected, and

recovered states, respectively. If n = 1, the host does not
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Fig. 2. Infection spread countermeasure model.

belong to the countermeasure group; otherwise, it is a member

of the group. Each host transitions according to the following

events:

a) Susceptible hosts could get infected by contact with

infected hosts ( 1©, 2©).

b) Infected hosts transition to the recovered state when the

botnet malware is removed from them ( 3©, 4©).

c) Susceptible hosts transition to the recovered state by

removing their vulnerabilities ( 5©, 6©).

d) When the botnet malware discovers a new vulnerability,

recovered hosts transition to the susceptible state ( 7©,
8©)

e) Hosts participate in or withdraw from the countermea-

sure group ( 9©).

Based on these transitions, the inhibition model represents

the infection dynamics. Let Sn(t), In(t), and Rn(t) (n ∈
{1, 2}) denote the fraction of the numbers of susceptible

hosts, infected hosts, and recovered hosts, respectively, at time

t, where n = 1 (resp. n = 2) means non-members (resp.

members) in the countermeasure group and S1(t) + S2(t) +
I1(t) + I2(t) + R1(t) + R2(t) = 1. The infection dynamics

of the inhibition model is given by the following differential

equations:

d

dt
S1(t) =− αS1(t){I1(t) + I2(t)} − δsS1(t)

+ η{I1(t) + I2(t)}R1(t)C(t) + τΦs(t),
(4)

d

dt
S2(t) =− αS2(t){I1(t) + I2(t)} − δsS2(t)

+ η{I1(t) + I2(t)}R2(t)C(t)− τΦs(t),
(5)

d

dt
I1(t) = αS1(t){I1(t)+I2(t)}−δiI1(t)+τΦi(t), (6)

d

dt
I2(t) = αS2(t){I1(t)+I2(t)}−δiI2(t)−τΦi(t), (7)

d

dt
R1(t) =δiI1(t) + δsS1(t)

− η{I1(t) + I2(t)}R1(t)C(t) + τΦr(t),
(8)

d

dt
R2(t) =δiI2(t) + δsS2(t)

− η{I1(t) + I2(t)}R2(t)C(t)− τΦr(t),
(9)

where α, δi, η, and δs are the same parameters as those in (1)-

(3). In addition, τ is a parameter representing the increase rate
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in the number of hosts that participate in the countermeasure

group. Φs(t), Φi(t), and Φr(t) are variables that determine

the behavior of hosts participating in or withdrawing from

the countermeasure group, which are derived based on the

evolutionary game theory discussed in Section III-B. C(t) is

a function that represents the efficiency of the countermeasure

group, which is defined later.

In (4)-(7), αSn(t){I1(t) + I2(t)} indicates the average

fraction of susceptible hosts getting infected per unit time at

time t because α{I1(t) + I2(t)} is the infectivity of infected

hosts. In (6)-(9), δiIn(t) indicates the average fraction of

infected hosts whose the botnet malware is eliminated per unit

time at time t. Also, in (4), (5), (8), and (9), δsSn(t) means

the average fraction of susceptible hosts whose vulnerabilities

are repaired per unit time at time t. In (4), (5), (8), and (9),

η{I1(t) + I2(t)}Rn(t)C(t) indicates the average fraction of

recovered hosts whose new vulnerability is found by the botnet

malware per unit time at time t. Note that η{I1(t) + I2(t)}
means the vulnerability discovery capability of the botnet

malware, which implies that the botnet malware exploits

the computing resources of infected hosts to discover new

vulnerabilities. On the other hand, C(t) (0 ≤ C(t) ≤ 1)

indicates the efficiency of the countermeasure group, which

is used to weaken the vulnerability discovery capability of the

botnet malware. In this paper, we define C(t) as

C(t) = 1− {S2(t) + I2(t) +R2(t)}. (10)

(10) supposes that the countermeasure group discovers new

vulnerabilities with the use of the computing resources of

member hosts (i.e., S2(t) + I2(t) + R2(t)) before the botnet

malware discovers them, so that it weakens the discovery

capability of the botnet malware in proportion to the number

of the member hosts.

B. Behavior of hosts based on the evolutionary game theory

We here determine variables Φs(t), Φi(t), and Φr(t) which

represents the selfish behavior of hosts based on the evolution-

ary game theory. Let us assume that there exist two strategies

that hosts can take. The strategy 1 is that the hosts do not

participate in the countermeasure group (i.e., states S1, I1,

and R1). On the other hand, the strategy 2 is that the hosts

participate in the countermeasure group (i.e., states S2, I2, and

R2). Furthermore, we assume the following:

• Each host reviews its strategy randomly.

• In case of the review, the host compares the cost of the

current strategy with the other strategy.

• Based on the comparison, the host determines whether it

changes the strategy or not.

Therefore, Φs(t), Φi(t), and Φr(t) are given by

Φs(t) =S2(t){S1(t) + I1(t) +R1(t)}Θ(π2, π1)

− S1(t){S2(t) + I2(t) +R2(t)}Θ(π1, π2),
(11)

Φi(t) =I2(t){S1(t) + I1(t) +R1(t)}Θ(π2, π1)

− I1(t){S2(t) + I2(t) +R2(t)}Θ(π1, π2),
(12)

Φr(t) =R2(t){S1(t) + I1(t) +R1(t)}Θ(π2, π1)

−R1(t){S2(t) + I2(t) +R2(t)}Θ(π1, π2),
(13)

where Θ(πa, πb) is the probability that a host taking strategy

a ∈ {1, 2} changes its strategy to b ∈ {1, 2}\a, and πn is the

cost of strategy n ∈ {1, 2}. They are given by

Θ(πa, πb) =
1

1 + exp

[
πa − πb

κ

] , (14)

π1 = −αδw{I1(t) + I2(t)}, (15)

π2 = −Ω, (16)

where κ is a temperature coefficient that determines how

sensitive the host is to the change in its strategy. δw and Ω
denote weight parameters for the costs of the strategy 1 and

the strategy 2, respectively.

In (11)-(13), X{Sn(t) + In(t) + Rn(t)} (X ∈
{Sk(t), Ik(t), Rk(t)}, (k, n) ∈ {(1, 2), (2, 1)}) indicates the

average fraction of hosts taking strategy k that contact with

hosts taking strategy n. The hosts change their strategies

with the probability Θ(πa, πb). Therefore, (11)-(13) means the

average fractions of hosts that change their strategies. Note

that the probability Θ(πa, πb) is determined according to the

difference between the costs of the strategies. The cost π1 of

the strategy 1 is proportional to the number of infected hosts,

which implies that non-member hosts tend to participate in

the countermeasure group as the number of infected hosts

increases. This behavior is based on a psychological factor

(e.g., many people receive vaccination when infectious disease

such as COVID-19 spreads). On the other hand, the cost π2

of the strategy 2 is constant, which means that each member

host provides a certain amount of its computing resource.

IV. EVALUATION

A. Model

We examine the behavior of our inhibition model

through numerical calculations. We use MATLAB

[1] to calculate the differential equations (4)-(9). The

initial state of the fraction of hosts in each state

is set to (S1(0), S2(0), I1(0), I2(0), R1(0), R2(0)) =
(0.9998, 0.0001, 0.0001, 0, 0, 0). This assumes that in the

initial state, there are a few infected hosts and the other hosts

are susceptible. Furthermore, a few susceptible hosts are

members of the countermeasure group. We set the parameters

as follows: α = 10, η = 10, δs = 1, δi = 1, τ = 1, δw = 1,

and κ = 0.1.

B. Results

Fig. 3 shows the fraction of the number of hosts in each

state against the time elapsed where the weight parameter of

the strategy 1 is Ω = 1. In the figure, “Countermeasure”

represents the fraction of the number of member hosts in

the countermeasure group. As we can see from the figure,

in the early stage of infection, about 80% of hosts get

infected. As the time elapses, the number of member hosts in
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Fig. 3. Fraction of the number of hosts in each state (Ω = 1).

the countermeasure group increases, followed by the number

of recovered hosts. As a result, the malware spreading can

be suppressed. This result implies that the countermeasure

group works well. After the malware spreading is suppressed,

the member hosts withdraw from the countermeasure group

because the cost π2 is not negligible.

We then examine the impact of the cost π2 = −Ω for

the countermeasure group. Fig. 4 shows the fraction of the

number of hosts in each state against the time elapsed where

Ω = 2. From this figure, we observe that member hosts

are more likely to withdraw from the countermeasure group,

compared with the result in Fig. 3. Therefore, the number of

member hosts rapidly decreases before the botnet malware is

completely eliminated. As a result, the infection of the botnet

malware spreads again. These results indicate that the cost for

the countermeasure should be low in order to suppress the

spreading of the botnet malware.

Finally, we examine the impact of the infectivity of the

botnet malware. Fig. 5 shows the fraction of the number of

infected hosts against the time elapsed where Ω = 1. We plot

the results of different values of the malware infection rate α.

Note that the high malware infection rate means the high in-

fectivity of the botnet malware. As we can see from the figure,

the increasing speed of the number of infected host becomes

high as the infection rate α increases. Meanwhile, when α is

large, the botnet malware is eliminated fast. This is because

hosts are more likely to participating in the countermeasure

group when the infectivity of the botnet malware is strong, so

that the countermeasure group works efficiently.

V. CONCLUSIONS

In this paper, we proposed an inhibition model for coun-

tering the diffusion of future malware. The inhibition model

represents the dynamics of the malware diffusion based on the

evolutionary game theory that considers the selfish behavior

of hosts under situations where there exists a countermeasure

group. Through numerical calculations, we examined the be-

havior of the inhibition model. As a future work, we will

evaluate the effect of various parameters, such as the repair

rate, because the parameters are different for hosts in the real

Fig. 4. Fraction of the number of hosts in each state (Ω = 2).

Fig. 5. Impact of the infectivity of the botnet malware (Ω = 1).

world. In addition, we will consider the spreading behavior of

the self-evolving botnets in more realistic scenarios.
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