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Abstract—Detecting real-time DDoS attacks is a big challenge
for network security. This paper proposes a hybrid machine
learning model for the detection and classification of DDoS
attacks. The system consists of a real-time detecting module
capable of processing Entropy-based features. In addition, the
classification module, based on the Hierarchical Temporal Mem-
ory and KNN classifier, is capable of mining changes in Entropy
features for the classification of different types of DDoS attacks.
Furthermore, it has the incremental learning capability to learn
new traffic behavior and recognize new types of attacks. Finally,
the simulation is conducted based on the CICDDoS 2019 dataset.
As a result, the proposed system can successfully identify different
types of attacks with high accuracy and precision.

I. INTRODUCTION

In the paper, we propose a new approach for DDoS
classification using entropy-based features and Hierarchical
Temporal Memory (HTM) algorithm [1]. The new method
can detect DDoS attacks in real-time, discriminate against
different types of attacks, update new attack patterns, identify
unknown attacks, and work with imperfect data. The purpose
is to develop a better DDoS detector, which can solve some
current problems when detecting and classifying different
DDoS attacks. However, some difficulties can be encountered,
including finding feature sets that can detect as many different
types of DDoS attacks as possible. Moreover, detectors must
work in high-speed networks and have a high detection rate
but low false negatives and false positives. Finally, the model
should have continuous learning and updates capabilities in
real-time. The proposed approach uses Hierarchical Temporal
Memory and machine learning algorithms to recognize pat-
terns in stream data. Combined with the HTM modules in
multi-layers, the approach can analyze complex data and build
more robust models with higher accuracy, precision, and detec-
tion rates. We get remarkable results when classifying different
types of DDoS attacks from regular traffic in our experiments.
Furthermore, together with Entropy-based features, the HTM
algorithm and multi-layer model presents the comprehensive
ability to detect DDoS attacks.

The paper is organized as follows. Section II provides a
general background of the HTM and Entropy methodologies.
The related works are presented in Section III. In section
IV, we describe the proposed System Architecture. Section V

discusses the experiment detail and evaluation results. Finally,
our conclusion and future works are presented in Section VI.

II. BACKGROUND

A. Entropy based method

Shannon entropy present the uncertainty or randomness of
a distribution. It can also monitor network traffic behavior for
abnormal detection effectively [2]. Entropy-based features are
also utilized together with machine learning methods for traffic
analysis achieving significant results.

The Shannon Entropy is defined by the equation:

H = −
∑n

i=1 pilog2pi

Where n is the total number of distinct items, and pi is the
occurrence rate of the item i.

In network traffic monitor, n can be the number of distinct
values of a network data field such as TCP port, IP address,
Packet length. While pi is the occurrence rate of a value in a
time interval of a data field. For example, we can calculate the
entropy of source IP address in a time interval by counting the
occurrence numbers of each distinct source IP address, which
can be read in packet’s IP headers belong to the observed time
interval, then calculate all corresponding occurrence rates pi
and apply the Shannon Entropy equation.

B. Hierarchical temporal memory Algorithm

HTM [1] imitates human brains to learn and recognize
patterns. HTM model uses the simple Hebbian algorithm in
the learning phase, allowing HTM to learn each input data
record only once. Therefore, HTM is so suitable for processing
online data streams. HTM can recognize patterns fastly by
unsupervised method. HTM models are less affected by noise,
can be trained quickly, with incremental learning. HTM can
map infinite numbers of input patterns to finite numbers of
Sparse Distributed Representations (SDR). Sparse Distributed
Representations (SDR) are binary arrays, which have two
essential characteristics. First, SDR can compare with other
SDRs to recognize how they are similar, look like a human’s
memory. Secondly, SDRs are highly noise-resistant and can
be sampled without the loss of much information. An HTM
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model has three most important parts: Semantic Encoder,
Spatial Pooler, and Temporal Memory.

Semantic Encoder: The encoder encodes the features vec-
tors or different data types to binary vectors on the Input
Space. The minimal element of Input Space is called cells.
One type of Encoder is Scalar Encoder.

Fig. 1. The basic structure of the HTM model consists of Semantic Encoder,
Spatial Pooler, and Temporal Memory. [1]

Spatial Pooler: Spatial Pooling converts binary vectors on
the Input Space to sparse arrays. The properties of the spatial
pooler allow HTM to maintain sparsity and overlap of Input
Space. Thus, similar input data have high overlap, and different
input data have low overlap.

Temporal Memory: This part is responsible for two im-
portant things, firstly, it learns and creates sequences of active
mini-columns from spatial pooler over time. Secondly, it
makes prediction about what pattern is coming next based
on the temporal context of each input. In Temporal Memory,
each mini-column has many cells, and each cell represents for
a different temporal context.

Finally, we can separate HTM applications into two stages
[1]. The first stage is the training phase; the HTM application
learns all patterns in the dataset, creates invariant representa-
tions (SDRs), and saves them in memory. The second stage is
the inference phase; the HTM application can use that memory
to interpret new input patterns and predict the following pattern
with continuous learning. After fully training, HTM can have
all the invariant object representations in its world.

III. RELATED WORKS

A. Entropy based method

Daneshgadeh et al. [3] proposed a method to detect DDoS
attack and distinguish High rate, Low rate DDoS attack and
Flash Event. The paper utilizes Shannon Entropy and machine
learning algorithms to detect abnormal events. Mahalanobis
Distance metric is used to distinguish High rate DDoS attack,
Low rate DDoS attack and Flash Event. The work uses
KOAD algorithm to classify abnormal and normal traffic in
an unsupervised manner, so it doesn’t require labeled data.

Koay et al. [4] proposed a method which uses entropy
based features and multi-classifier to detect abnormal traffic
events. The paper has experiments with two types of entropy
including regular entropy and separation entropy. Separation
entropy can give the variation of two distinct entropy-based
features. The method can utilize the rich information of
multiple entropy features to improve detection rate and reduce
false alarm rate. The paper proposed a system called E3ML
which can utilize rich information of multiple entropy features

and 3 machine learning algorithms include Recurrent Neural
Network, Multilayer Perceptron, and Alternating decision tree,
to classify abnormal events.

Xinlei Ma et al [5] proposed a method to detect DDoS
by analyzing relationship between source IPs, and destination
IPs by chaos theory. The method will collect network traffic
and calculate normalized entropy of source and destination
IP address. The model use Lyapunov exponent to calculate
a rate of separation between two related entropy series, and
define threshold rate of separation to detect DDoS attack.
The experiment shows that the rate of separation will change
significantly when DDoS attack happens.

B. Machine learning-based method

Machine learning gives computers the ability to learn from
data, explore hidden patterns and relationships to give predic-
tions for new data. Supervised machine learning algorithms
need labeled data, while unsupervised machine learning algo-
rithms can describe data structure with unlabeled data. Input
data for machine learning algorithms are features, and they
should be chosen carefully to improve accuracy and reduce
computation time. Feature selection is a necessary phase to
analyze high dimensional and noisy data.

Ikram Sumaiya Thaseen et al. [6] use multi-class support
vector machine and chi-square feature selection to decrease
training and testing time and increase the accuracy of each type
of classification. Random forest is more appropriate with a
large data set than SVM or Naive Bayes, and also can adaptive
with data size. However, Random forest takes a longer time
for training, but less time for predicting. Random forest and
decision tree can learn from data features, and define rules to
separate dataset into many branches. Kamarularifin Abd Jalil
et al. [7] compares the performance of Decision Tree, Support
vector machine, and neural network.

Phurivit Sangkatsanee et al. [8] proposes a real-time IDS
using Decision Tree. Nearest neighbor and logistic regression
are famous regression algorithm to find the most similar
training data with the observation. However, they are memory-
intensive and may have poor performance with high dimension
data.

Deep learning is suitable to model complex non-linear
relationships by learning multiple levels of data representations
that correspond to different levels of abstraction. [9] Deep
learning can learn complex patterns with high dimension data,
but it may be high misclassification. Fanzhi Meng et al.
[10] compares the performance of LSTM with other machine
learning algorithms including SVM when classifying attack
and normal instances in NSL-KDD dataset. The result shows
that LSTM has outperformed 99% detection rate and accuracy.

C. Survey of Features for DDoS detection

In our survey, researchers leverage source information is ex-
tracted from packet headers to create new features, describing
the nature of attacks. Researchers used many different feature
sets to detect DDoS attacks. Some features are easy to extract
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from packet headers, but some features are so complicated to
calculate in real-time.

Panida Khuphiran et al. [11] proposed two feature sets,
including window-based and packet-based. The features are
used to detect DDoS attacks in the 2009 DARPA Intrusion
Detection dataset. Qin et al. [12] proposed a method using
entropy-based features to model normal patterns by clustering
algorithm. The method calculates five entropy-based features
including source IP, destination IP, destination port, flow
duration, packet size. The entropy of packet size uses five
packet size-level to appropriate with a high-speed network.

Daneshgadeh et al. [3] proposed a hybrid method to dis-
criminate between normal traffic, DDoS, and Flash Event. The
authors use two types of feature vectors. One vectors consists
of the time interval, destination IP, and source IP Entropy for
the online machine learning-based method. The other consists
of the time interval.

Eray Balkanli et al. [13] proposed two feature sets to detect
DDoS Attacks in backscatter darknet traffic. The paper proved
that their method can detect DDoS attacks without features
related to IP addresses and port numbers.

Koay et al. [4] proposed a method to classify normal and
attack traffic in a dataset that has different kinds of DDoS
attacks. The method uses fifteen regular entropy-based features
and five entropy variation features. The entropy variation
features based on the variation of two distinct regular entropy-
based features, generated using the variation of Lyapunov
exponent separation method[5]. The author claims that their
method can detect DDoS attacks effectively across datasets
with different intensities.

In the survey, we notice that Entropy-based features are the
most common features, which are used by Qin et al. [12],
Daneshgadeh et al. [3], Mao et al. [14], Koay et al. [4] to
detect different types of DDoS attacks in DARPA, or CAIDA
dataset. In addition, entropy is a compact form to describe
the changing feature’s distribution, which is very important in
network anomaly detection.

IV. SYSTEM ARCHITECTURE

A. Features Extraction

We extract entropy features from DDoS datasets and ob-
serve entropy-based sequences of network traffic. We notice
that entropy features can be affected by DDoS attacks strongly,
and discriminate between different types of attacks. For exam-
ple, when we visualize the entropy of Source IP, Destination
IP, Source Port, Destination Port, and Packet length in CICD-
DoS 2019 training dataset, we find out changing entropy as
DDoS attacks happen. In addition, instead of using the entropy
of packet size, other proposed features are found by using the
distribution of packet size and mean packet size. Since it is
not easy to calculate each distinct packet size in a high-speed
network, we adopt the packet size in eight different levels.

Finally, we propose the set of feature vectors as input data.
The feature vectors consist of eight features, including the
entropy of TCP source, destination ports, and packet length.
Moreover, the average packet length, total packet count, and

Fig. 2. The block diagrams of the proposed HTM-KNN model in two layers.

the distinct number of TCP source and destination ports are
also included. We believe that our selected features can be
used to discriminate against many types of DDoS attacks in
CICDDoS 2019 dataset [15].

B. Signature of different type of DDoS attack

The proposed method aims to classify and recognize the
DDoS attack signatures in an observation time interval of
fifteen seconds. After extracting and analyzing features from
the CICDDoS 2019 dataset, we notice that different types of
DDoS attacks can make different changes in distributions of
IP, port, packet size. We use Entropy-based features, numbers
of distinct items in distribution, average packet length, and
packet count to record the changes of network characteristics
when an attack happens. By using this method, we can find
out signatures of different types of attacks, and which types
of attacks have the same signatures.

Table I shows how each features changes when a DDoS
attack happens in CICDDoS 2019 dataset. The symbol of (0)
means the attack has a feature value similar to regular traffic.
The symbol of (-) represents the attack makes the feature
value decreasing. Furthermore, the symbol of (+) means the
attack makes the feature value increasing. The symbol of (--)
represents decreasing more than symbol of (-), and similarly,
the sign of (++) means increasing more than symbol of (+).
Thus, as shown in Table I, we can easily find the different
types of attacks based on the changing trend of features. For
example, when comparing SYN(10) and TFTP(11) attacks, we
can see that the Protocol Entropy feature is different. SYN(10)
makes the feature value decrease, but TFPT(11) increases the
feature value.

With the currently used features, we can discriminate be-
tween nine types of DDoS attacks. However, we still can not
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distinguish between the attacks of SSDP(6), UDP(7), UDP-
Lag(8), and WebDDoS(9) from the regular traffic.

C. Recognize pattern with HTM Cortical Column

1) Create SDRs from sequences of input data by HTM
algorithm: Each input data may have one or combined many
features. The scalar encoder is used to convert input data
into binary vectors. These binary vectors are sent to the
Spatial Pooler module to create SP-SDR and then send to
the Temporal Memory module continuously to create TM-
SDR. TM-SDR are outputs of the Temporal Memory module.
They are SDR binary arrays and used as patterns to present
a sequence of input data at a time interval. Each pattern
represents the corresponding input data and its context. The
final step is to use classification techniques to label prototype
patterns in the training phase and prediction phase.

2) Find prototype patterns from SDRs in the training phase:
In this step, we will use a clustering technique to the find
prototype patterns from those created from training datasets.
Prototype patterns are SDR binary arrays and can affect the
result of the KNN classifier, which is used to assign labels for
observed patterns.

The raw overlap is the method used to calculate the distance
between two binary patterns. The distance value is the number
of bits that differ between two binary arrays. The smaller the
distance between two patterns is, the more similar they are.

We define the distance threshold as the minimum dis-
tance between two prototype patterns. We define the dis-
tance threshold as the minimum distance between two pro-
totype patterns. Distance threshold is an optimized parameter
of the HTM-KNN model. Lower distance threshold will create
more prototype patterns in the training phase, and higher
distance threshold will create fewer prototype patterns. We
need an optimized distance threshold to create enough pro-
totype patterns, and each prototype pattern is present for a
variant of a type of attack. In the training phase, when HTM
calculates a training pattern from input data; the model finds
the smallest distance between the new pattern and all existing
prototype patterns. If the smallest distance is higher than
the distance threshold, the training pattern will be assigned
as new prototype patterns. If the smallest distance is lower
than the distance threshold, the new pattern will be assigned
as absorbed patterns. We will assign labels for all prototype
patterns, these labels are as same as those in the corresponding
input data.

3) KNN assign labels for observed pattern in the prediction
phase: KNN algorithm is adopted to assign the label for
observed patterns in the prediction phase. In order to assign
a label for input data, the model must convert the observed
input data to an SDR binary array, also called an observed
pattern. Then, the model can compare the distance between the
observed pattern with all existing prototype patterns specified
in the training phase and find k nearest prototype patterns.
Finally, the observed pattern is assigned a label by major
voting between its k nearest prototype patterns.

D. Two-layers HTM-KNN model

Using the HTM Cortical Column described in Section IV-C,
we can recognize the most similar attack signature based
on the increasing and decreasing tendency of the features.
We build a two-layered HTM model, as shown in Figure
2. to observe all network features and then recognize attack
signatures to assign labels for observed patterns in the network
traffic.

Layer 1 is responsible for the role of observing and assign-
ing labels for all features for all features. Each HTM Cortical
Column observes a particular feature using only three types
of (-), (0), (+) labels. Label (0) means the attack makes the
feature value similar to that of regular traffic. Label (-), and
(+) represent the decreasing and increasing tendency of the
feature value. Input data of layer 1 is a serial of records. Each
record represent for each time interval and has values of a
feature set.

Layer 2 is responsible for recognizing the matching attack
signatures or most similar attack signatures and then predicting
the type of attack. All output data from layer one are combined
to become input data of layer two. In the layer two, the HTM
Cortical Column converts the input data to SDR binary and
compares the observed SDR with the most similar signatures.
Based on that information, we can predict the type of attack
against regular traffic. The two-layers HTM model can also
remember the signature of different types of attacks in the
training phase and then recognize attack signatures in the
prediction phase.

V. EXPERIMENT AND EVALUATION

A. Simultion and testing environment

In our experiment, we use the merged CICDDoS 2019
dataset and MAWI dataset [16]. CICDDoS 2019 provides pcap
files for benign traffic and the most updated common DDoS
attacks. The attack flows are labeled by timestamp. CICD-
DoS2019, have one training dataset and one testing dataset.
The training dataset has twelve DDoS attack types including
NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP,
UDP-Lag, WebDDoS, SYN, and TFTP. The testing dataset has
seven DDoS attack types including PortScan, NetBIOS, LDAP,
MSSQL, UDP, UDP-Lag and SYN. MAWI070201 dataset has
a role of background traffic.

Fig. 3. Attack class and attack volume in Training dataset
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TABLE I
THE TREND FOR ALL THE FEATURES OBSERVED DURING THE ATTACKING PHASE IN CICDDOS 2019 DATASET.

IP Entropy IP Distinct Port Entropy Port Distinct
Signature #

Attack

type/Feature

Src IP

Entropy

Dst IP

Entropy

Src IP

Distinct

Des IP

Distinct

Src Port

Entropy

Dst Port

Entropy

Src Port

Distinct

Dst Port

Distinct

Pkt Len

Entropy

Average

Pkt Len

Pkt Count Protocol

Entropy

NTP (12) - - 0 0 + + 0 + - - + - 1

DNS (1) - - 0 0 - + 0 0 0 0 0 + 2

LDAP (2) - - 0 0 + + 0 + + + + + 3

MSSQL (3) - - 0 0 + + + + + 0 + + 4

NetBIOS (4) - - 0 0 + + 0 + - - + + 5

SNMP (5) -- -- 0 0 + + 0 + + + + + 3

SSDP (6) - - 0 0 + + + + + - + + 7-1

UDP (7) -- -- 0 0 + + + + + - + + 7-1

UDP (7) -- -- 0 0 + + + + 0 - + + 7-2

UDP-Lag (8) 0 0 0 0 0 0 0 0 0 0 0 0 0

WebDDoS (9) 0 0 0 0 0 0 0 0 0 0 0 0 0

SYN (10) - - 0 0 + + + + - - + - 8

TFTP (11) - - 0 0 + + + + - - + + 9

Portmap (13) 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II
EACH NAME OF DDOS ATTACK WILL BE REPLACED BY A NUMBER OF ATTACK CODE

Types of attack DNS LDAP MS-SQL Net-BIOS SNMP SSDP UDP UDP-Lag Web-DDoS SYN TFTP NTP Portmap

Attack code 1 2 3 4 5 6 7 8 9 10 11 12 13

Fig. 4. Attack class and attack volume in Testing dataset

We get the PCAP files of the training and testing dataset to
extract the features. In the experiment, we use eight features,
including the entropy values of TCP source and destination
port, entropy of packet length, the distinct number of TCP
source and destination port, the average packet count and total
packet count.

We create feature vectors for each 15 seconds time interval
of the two datasets. Figure 3 shows the time intervals in DDoS
attacks and the total packet of each time interval. We can
notice that LDAP, MSSQL, NetBIOS, SNMP, SSDP, SYN
DDoS attacks appear with high volume traffic. While UDP-
Lag and Web DDoS appear with low volume traffic, UDP
attacks appear with both low volume and high volume traffic.
The model detect LDAP, MSSQL, NetBIOS, UDP, UDP Lag,
SYN in the testing dataset. Figure 4 show that the attack
volume of LDAP, MSSQL, NetBIOS, UDP, UDP Lag, SYN

attack in the testing dataset has a similar attack volume with
the same type of attack in the training dataset. Table II shows
the attack code used in Figure 3 and Figure 4. Again, the
attack code replaces the name of the DDoS attack.

B. Results and evaluation

The model learns all input feature vectors in the training
phase, creates corresponding SDRs, chooses prototype pat-
terns, and saves all prototype patterns in memory. Prototype
patterns represent normal behaviors and all twelve types of
DDoS attacks, including NTP, DNS, LDAP, MSSQL, Net-
BIOS, SNMP, SSDP, UDP, UDP-Lag, WebDDoS, SYN, and
TFTP.

The model converts the input data sequence in each observa-
tion time interval to corresponding SDRs in the testing phase.
Then, KNN algorithm assigns labels for each observed SDR by
analyzing the distance between the corresponding SDR with
all prototype patterns detected.

As shown in the Figure 2, there are eight HTM cortical
columns in the layer one. Therefore, for all observed features,
labels of (-), (0), and (+) are assigned to the eight cortical
columns for each time interval. Layer one signals layer two
the observed signature of the current time interval. Then,
Layer two continues to create SDRs representing the attack
signatures from layer on and compare the observed SDR with
all learned attack signatures in the training phase. Finally, the
matching can be found with the most similar attack signatures.
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In the testing dataset, there are seven different types of
DDoS attacks. The model learned six types of attack patterns,
including NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, and
SYN DDoS attacks in the training phase. However, the model
misses the PortMap attacks. It should be labeled as abnormal,
and the model should consider Portmap as an unknown attack.

Table III presents the performance of HTM-KNN by metrics
of detection rate, accuracy, and precision. The model achieves
high detection accuracy and precision for all types of DDoS
attacks. When we use matching signature method as the
evaluated result of the model, the result shows that the model
can detect LDAP-SNMP, MSSQL, NetBIOS, UDP-SSDP, and
SYN DDoS attacks. Notice that HTM-KNN model cannot
distinguish between LDAP and SNMP; UDP and SSDP with
the selected features. In our experiment, True-Positives and
False-Positives of UDP-Lag is 0, so the Detection rate is 0
and Precision is 0/0. Refer to attack signatures present in
table I, UDP-Lag has the same attack signature as normal
traffic pattern, so that the model didn’t detect any UDP-Lag
pattern. In order to detect UDP-Lag DDoS attack and more
types of attack, we will continue research to add new features
to feature set. Those new features should show changes when
attacks appear.

Table IV presents the confusion matrix of model. Again,
there are some false negatives in the time intervals of LDAP-
SNMP, MSSQL, NetBIOS, UDP-SSDP, and SYN DDoS at-
tacks. The false positives are due to the misses of the matching
signature of observed attack patterns. As a result, the model
labels no matching. Instead of assigning labels for no matching
pattern, we can adapt the strategy by referring the most similar
attack signatures. The most similar attack signature can be
specified based on distance between SDRs of the closest
attack signatures with the observed patterns. Figure 5 and
Figure 6 present the classification results of the HTM-KNN
model for the entire observing time. The model uses matching
signature method and most similar attack signature method to
classify patterns. The orange columns present the predicted
class of the HTM-KNN model, and the blue lines present
the Actual class of the CICDDoS 2019 testing dataset. For
each time interval, when the blue line matches the top edge
of the column, it means that model has a correct prediction.
In matching signature method, if an observed attack pattern
matches a prototype pattern (distance is zero), it will be labeled
the same as the prototype pattern. The observed attack pattern
will be labeled as "No Matching", if the model cannot find any
matching prototype pattern. In most similar attack signature
method, model will assign label of the closest prototype
pattern to observed attack pattern.

The model can distinguish the attack time interval from
the normal. Using the matching signature method, the model
achieves higher accuracy for detecting the normal behavior
time intervals. Moreover, the most similar attack signature
method can achieve a higher detection rate.

TABLE III
THE PERFORMANCE OF THE HTM-KNN MODEL.

Metric Attack types HTM-KNN

Detection rate (%)

LDAP-SNMP 91
MSSQL 77
NetBIOS 87

UDP-SSDP 80
UDP-Lag 0

SYN 90

Accuracy (%)

LDAP-SNMP 99
MSSQL 99
NetBIOS 99

UDP-SSDP 99
UDP-Lag 96

SYN 99

Precision (%)

LDAP-SNMP 100
MSSQL 100
NetBIOS 100

UDP-SSDP 89
UDP-Lag 0/0

SYN 100

Fig. 5. Classify time intervals and assign label using matching signature
method

Fig. 6. Classify time intervals and assign label using most similar attack
signature method
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TABLE IV
CONFUSION MATRIX OF TESTING DATA SET USING HTM-KNN MODEL

Actual Class
Predicted Class

NTP DNS LDAP-

SNMP

MSSQL Net-BIOS SSDP-UDP UDP-Lag Web-DDoS SYN TFTP Normal No

Matching

NTP 0 0 0 0 0 0 0 0 0 0 0 0

DNS 0 0 0 0 0 0 0 0 0 0 0 0

LDAP-SNMP 0 0 30 0 0 0 0 0 0 0 0 3

MSSQL 0 0 0 28 0 4 0 0 0 0 2 2

NetBIOS 0 0 0 0 29 0 0 0 0 0 0 4

SSDP-UDP 0 0 0 0 0 33 0 0 0 0 1 7

UDP-Lag 0 0 0 0 0 0 0 0 0 0 27 14

Web-DDoS 0 0 0 0 0 0 0 0 0 0 0 0

SYN 0 0 0 0 0 0 0 0 30 1 0 2

TFTP 0 0 0 0 0 0 0 0 0 0 0 0

Normal 0 0 0 0 0 0 0 0 0 0 761 0

VI. CONCLUSION AND FUTURE WORKS

This paper proposes methods to classify different types
of DDoS attacks using entropy-based features, Hierarchical
Temporal Memory (HTM), and K-nearest neighbors algorithm.
The methodology adapts the Shannon entropy as an essential
indicator to detect DDoS attacks in real-time. HTM allows the
model to remember all prototype patterns of different types of
attacks and assign labels for input patterns by other machine
learning algorithms, including KNN. The models also can
implement incremental learning by updating prototype patterns
without retraining the entire model. The experiment is mainly
conducted by using the merged CICDDoS 2019 and MAWI
dataset. The simulation results show that the proposed models
have high performance classifying LDAP, SNMP, MSSQL,
NetBIOS, UDP, SSDP, SYN DDoS attacks. We plan to update
the model by adding more features to detect more different
types of attacks based on different network traffic traces
for future work. We also want to complement new features
to discriminate between SSDP and UDP DDoS attacks and
implement the model on physical switches to detect DDoS in
real-time.
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