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Abstract—Singing voice synthesis (SVS) systems are built to
generate human-like voice signals from lyrics and the correspond-
ing musical scores. In most SVS systems, a neural network-based
auxiliary duration model is employed to control the duration
of phonemes. In this paper, a rule-based algorithm inspired by
Mandarin phonology is proposed for the duration modeling in
Mandarin SVS. Specifically, the algorithm infers the duration
of an “initial” consonant by looking up syllables in an existing
training set that begin with the same consonant and have similar
note lengths, and then computing the average consonant duration.
Around this, we employ a combination of Tacotron2 and Parallel
WaveGAN as the backbone of our SVS system for their favorable
data efficiency on small datasets. Experimental results show that
the singing voice synthesized by the proposed duration model is
more expressive than that of a learning-based model. Moreover,
since Mandarin is a tonal language, the inclusion of tonality
consideration further enhances the naturalness of the generated
voices.

I. INTRODUCTION

Over the recent years, machine learning and neural network
(NN) models have become increasingly capable of generating
human-like singing voices from musical scores with lyrics,
a task we refer to as singing voice synthesis (SVS) in this
paper. While traditional paradigms of performing SVS were
based on concatenation techniques [1] and hidden Markov
models (HMMs) [2], a variety of deep learning strategies
have been adopted nowadays for SVS to improve the quality
of the generated voices. For example, deep neural networks
(DNNs) have been introduced to SVS [3] to learn the mapping
from musical scores to acoustic features. Convolutional neural
networks (CNNs) [4] and recurrent neural networks with long-
short term memory (LSTM) cells [5] exhibited capabilities
to capture the long-term dependencies of singing voices.
Generative adversarial network (GAN) has also been adopted
to alleviate the so-called over-smoothing problem [6].

In addition, taking advantage of the similarity between
SVS and text-to-speech (TTS), researchers have also employed
attention-based sequence-to-sequence (seq2seq) architectures,
which have led to state-of-the-art TTS models [7]–[9], to SVS
[10], [11]. As far as waveform generation is concerned, neural
vocoders such as WaveNet [12], WaveRNN [13], and Parallel
WaveGAN [14] have been used in SVS systems for converting
acoustic features to time-domain audio samples, for producing
natural-sounding singing voices [4], [10], [15], [16].

While lots of efforts have been made to improve the
spectral fidelity of the synthesized singing voices, the impact
of duration and time-lagging has not been thoroughly explored.
Unlike the case in TTS, where the alignment error between
the phoneme-level input to the frame-level output may not be
harmful, such alignment error would be an important issue
for SVS as it negatively affects the tempo and rhythms of
singing. Coarse-grained alignment may even lead to skipped or
repeated utterances that do not match the musical notes. There-
fore, an auxiliary duration model is necessary for SVS. If we
can expand beforehand the phoneme-level input sequence to a
frame-level sequence with the same length as the target output
sequence, the alignment between the encoder and decoder
would be much easier [17], [18]. This has been demonstrated
by Blaauw and Bonada [19], who showed that fine-grained
alignment between the input sequences and the corresponding
output acoustic features can be assured by informing the
phoneme duration to a seq2seq-based SVS system.

In SVS, the duration model is commonly constructed by
adopting a neural-network architecture without resorting to
domain knowledge in linguistics. For example, a duration
model may consist of several layers of LSTM [5], [10], [20]
or CNN [21], followed by a post-processing step to constrain
the voice timing associated with the note length. Although
such networks are versatile for many purposes, they also rely
heavily on the availability of a large annotated database. When
the dataset is not sufficiently large, such duration models may
not generalize well to unseen input scores.

Focusing on Mandarin SVS, here we propose a rule-
based duration model relying on the phonology of Mandarin.
Phoneme duration analyses were conducted within a recently
annotated Mandarin singing dataset MPop600 [22] to provide
the foundation of the rule-based algorithm. To evaluate its
performance, the combination of Tacotron2 and Parallel Wave-
GAN is selected as the backbone of our SVS system due to
their favorable data efficiency on small datasets. To compare
the performance of different duration models, subjective and
objective evaluations are conducted, and some audio samples
for the listening test are available via this link1. Furthermore,
tonality consideration and data augmentation are applied to

1https://furongyang.github.io/audio-demo-apsipa/
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Fig. 1. Comparison on duration of initials and finals in singing. Through the
quartiles, box plots visually show the distribution and skewness of phoneme
durations in stretched Mandarin syllables.

our duration algorithm to see if robustness can be improved.
The paper is organized as follows. Section II introduces

related background knowledge. Section III presents statistical
analyses of phonology and the duration modeling algorithm.
Section IV describes the design of our SVS system. In
Section V, the experimental setup and the result evaluations
are reported, and conclusions are given in Section VI.

II. MANDARIN PHONOLOGY IN A NUTSHELL

In most Mandarin SVS system, lyrics in a musical score
are transcribed automatically by a linguistic processor from
the character level to phonetic level. Specifically, each Chinese
character represents a syllable, which can be decomposed into
an initial followed by a final. While an initial can always be
regarded as a consonant, a final can be a combination of a
medial, a nucleus vowel, and a coda [23]. Therefore, strictly
speaking, initials and finals are not equivalent to phonemes.
For convenience, we casually refer to initials and finals as
phonetic components (PhCs) in this paper. The list of PhCs
in Mandarin Pinyin system can be looked up from many on-
line resources2. Note that, in addition to the initials and finals,
each Chinese character is also associated with a tone.

In Mandarin singing, when a character in lyrics is sung
with a long-duration note, different regions of it are not
stretched uniformly [24]. Linearly stretching on utterances
may be unnatural since the vowel part (in the finals) should be
stretched a lot more than the consonants in the initials. As a
result, time-scale modification algorithms have been developed
to achieve natural speech stretching [25], [26].

III. DURATION ANALYSIS

In SVS, a duration model is meant to predict the duration
of each phoneme in the lyrics, since this information is not
explicitly given by the musical scores. Without an auxiliary

2https://www.yellowbridge.com/chinese/pinyin-rules.php

(a)

(b)

Fig. 2. Duration of phonetic components. (a) Median duration across all
possible Mandarin initials, transcribed in Pinyin. (b) Duration vs. note length.

duration model, the number of final output frames is predicted
directly from the alignment between phoneme-level and frame-
level sequences, which is not precise enough. Once “how long
a phoneme should sustain” is clearly informed, the duration
error of SVS can be lower, improving the naturalness in the
rhythm of singing. We provide an empirical evidence of this
in Fig. 9, the result of subjective preference test in Section V.

In this paper, we attempt to determine the length of PhCs for
SVS by an exemplar-based approach with simple phonological
rules. In what follows, we present an analysis of stretching
first, and then details of the way we develop our algorithm.

A. Phoneme Stretching Analysis

In human singing, when words are stretched by long-
duration notes, different regions of a syllable are not stretched
by the same ratio. For instance, Duan et al. [27] found
that vowel sounds are stretched to maintain musical notes
in singing based on their analysis of the NUS-48E corpus,
an English singing and speech database. Here, we similarly
analyzed the phoneme duration stretching in a Mandarin
Chinese singing database MPop600 [22], which has duration
annotations at the phoneme level. For instance, Fig. 1 displays
the distribution of duration of the /p/ initial and the /a/ final
in Mpop600. The box plots show that /a/ usually lasts longer
than /p/, and the /p/ duration concentrates in a small range
(≤ 0.2 sec). Also, outliers are fewer in /p/ than in /a/, which
corroborates our observation that initials would not stretch
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Fig. 3. Probability density function of all initial ratios from 4 singers.

much when a Chinese character is sung with a long note. The
trend concluded from the /p/ and /a/ example displayed in
Fig. 1 was consistently observed in most of the other initials
and finals in MPop600, only with slight variations in their
particular distributions.

With a thorough inspection of Fig. 2 (a), we see that the
Mpop600 dataset covers all the initials relevant in modern
Mandarin. More importantly, the figure confirms that different
initials have significantly different durations, displaying the
complexity of the duration prediction task. However, the
duration of a phoneme is not solely decided by its own identity
but mainly by the utterance length of the entire syllable. To
investigate how initials and finals are stretched with various
note lengths, we created a scatter graph for all the PhCs (see
Fig. 2 (b)) sung by one female singer. Each dot represents
one PhC duration with the corresponding note length, and the
straight lines show the results of least-square regressions.

The slope of the regression line is 0.14 for the initials,
and 0.86 for the finals. Along with the note length, the
duration of initials (blue dots) increases and tends to maintain
at a certain range. Also, as expected, the average duration
of finals (red dots) keeps growing when the note length
increases because vowel sounds are the dominant constituent
of syllables. Combined, they show that the lengths of initials
and finals are indeed highly correlated to note lengths.

Across different singers, we further found that the ratio
of initial duration to note length (referred to as initial ratio
hereafter) has little variation. This is shown in Fig. 3—the
probability density functions for the initial ratios of the four
singers indeed look similar, with a peak near 0.25.

B. Rule-based Algorithm

Our rule-based duration model treats the training set as a
searching pool, which includes all the Mandarin PhCs, and
the initial ratio is the major target of prediction. In MPop600,
the phoneme durations were obtained by forced alignment3

3https://github.com/open-speech/speech-aligner

Fig. 4. Rule-based duration model illustrated by the decision tree.

and are regarded as the ground truths in this research. As for
unseen data, only musical scores were given and they come
without the information of phoneme duration. We propose to
determine PhC durations for unseen input data based on three
rules; Fig. 4 illustrates the strategy with a decision tree, and
Algorithm 1 demonstrates the conditions and implementations
of these rules in detail. In Fig. 4, the input is a combination
of {initial, final} for a character and the corresponding note
length. If the Pinyin transcription of a character contains only
a final, a zero-initial token is assigned to it to ensure that
all characters can be decomposed into two PhCs. To avoid
confusion, some mathematical symbols in Algorithm 1 are first
explained as follows,

• D and D′: training set and testing set, respectively.
• pi and qi: initial and final decomposed from the i-th

character in D.
• p′i and q′i: initial and final decomposed from the i-th

character in D′.
• Li: note length of the i-th character from D.
• L′i: note length of the i-th character from D′.
• Ri: the predicted initial ratio of the i-th character.
• di: initial duration of the i-th character from D.
• dinit

i and dfin
i : the predicted initial duration and final

duration for the i-th character in D′, respectively.

The following three rules are established to search the
proper initial ratio from the training data.

1) Rule 1: First, given {p′i, q′i, L′i} from one character in
D′, find out all entries in D with the same initial, same final,
and the note length that does not differ from L′i by more than
5 ms. Secondly, extract {di, Li} from all these entries in D
and calculate the average initial ratio. The predicted initial
duration is then obtained by multiplying this ratio with L′i,
while the final duration fills the remaining length.

2) Rule 2: If no entry could be found in D to satisfy
the requirement in rule 1, find out all entries with the same
initial and the similar note length from the training data. We
assume that with different finals, the initial ratio could still
be effectively predicted. If the input meets the requirement of
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Algorithm 1 Rule-based duration model.
Input: Phonetic components (initial p′i & final q′i) of one

character and and its note length L′i in testing set D′.
Output: Durations dinit

i and dfin
i ;

1: for all (p′i, q′i, L′i) ∈ D′ do

2: if Rule 1: S = {(pj , qj , Lj) ∈ D : pj = p′i, qj = q′i,

|Lj − L′i| ≤ 5 ms} 6= ∅ then

3: Ri =
1
|S|

∑|S|
j=1 dj/Lj . Ratio of initial p′i

4: dinit
i = Ri × L′i, dfin

i = (1−Ri)× L′i
5: else if Rule 2: S = {(pj , qj , Lj) ∈ D : pj = p′i,

|Lj − L′i| ≤ 5 ms} 6= ∅ then

6: do step 3 ∼ 4

7: else

8: Rule 3: let S = {(pj , qj , Lj) ∈ D : pj = p′i}
9: for k = 10, 20, ..., 50 do

10: find k-nearest neighbors of L′i to form Sk ⊆ S
11: Calculate σk, the STD of dj/Lj in Sk

12: k? = argmink σk

13: let S = Sk? and do step 3 ∼ 4

14: return dinit
i and dfin

i ;

rule 2, repeat the multiplication in rule 1 and return the output
dinit
i and dfin

i .
3) Rule 3: If, still, no entries in D are found to satisfy the

requirement in rule 2 due to the note length constraint (within
5 ms), we collect all entries of the same initial. From this
set, find the k-nearest neighbors (KNN) whose note lengths
are closest to L′i and denote the subset as Sk. How many
neighbors should be engaged is determined by the standard
deviation (STD) of initial ratio in the subset Sk. Empirically,
we set the value of k to be 10, 20, 30, 40, or 50, and select
k = k? that produces the smallest STD. Here, we mention that
the MPop600 covers all the Mandarin PhCs so rule 3 would
always find a non-empty set.

Empirically, the actual percentage of terminating the search
by rule 1, rule 2, and rule 3 is 88.0%, 11.2%, and 0.78%,
respectively. Most of the times the search can be completed by
rule 1 and 2 since the common note lengths are well balanced
in the training data.

IV. SYSTEM DESIGN

As shown in Fig. 5, our proposed system consists of three
modules: 1) A length regulator with a duration model, which
expands the phoneme-level sequence to frame-level according
to the phoneme duration; 2) A Tacotron2-based network which
predicts a sequence of acoustic frames from an expanded
frame-level input sequences; 3) A Parallel WaveGAN (PWG)

(a)

(b)

Fig. 5. System design. (a) The overview of the proposed Mandarin singing
voice system. (b) The mechanism of how the length regulator works.

which generates time-domain waveform samples conditioned
on the mel-spectrogram.

A. Length Regulator and Input Representation

The score information which includes the phoneme identity,
the note pitch, and the note length is first fed into a length
regulator module. This module, inspired by FastSpeech [17],
utilizes the given phoneme durations to expand the length of
the input matrices to the estimated number of final output
frames by repetition. It should be clarified that the phoneme
durations are given by forced alignment in the training phase,
and obtained by the duration model in the inference phase
(see Fig. 5(b)). This process mitigates the difficulty for the
attention module by creating a quasi-one-to-one alignment
between the ensuing hidden states and the predicted mel-
spectrogram frames. Subsequently, the three expanded matri-
ces are embedded separately in the same dimensional space
and then summed together as the input sequence.

B. Acoustic Model

Our acoustic model follows the paradigm of mel-
spectrogram prediction set out by Tacotron2 [8]. The encoder
consumes the input sequence through a 3-layer convolutional
network to embed the temporal context and integrate the in-
formation across the summed phoneme, pitch, and note length
embeddings. A stack of 2 bi-directional LSTM layers then
encodes the embedded sequence into sequential hidden states.
For the decoder, 2 LSTM layers stack on a location-sensitive
attention module [28], and their output is linearly projected
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TABLE I
OBJECTIVE EVALUATION RESULTS OF DIFFERENT SYSTEMS

Model Dur er. Dur cor. F0 er. F0 cor. MCD
model 1 38.31 0.40 6.83 0.73 15.08
model 2 10.37 0.95 6.27 0.88 8.26
model 3 8.63 0.96 5.02 0.90 7.12
model 4 8.74 0.96 4.68 0.95 7.03
model 5 8.40 0.97 2.20 0.97 6.86

Fig. 6. Results of MOS test for each model and the reference. The error bars
represent the 95% confidence intervals.

to be the predicted mel-frames. In this autoregressive setup,
every predicted mel-frame passes through a 2-layer bottleneck
module before feeding back to the decoder module to provide
contextual information for predicting the next frame. Lastly,
a convolutional post-net predicts the residual and adds it onto
the predicted mel-spectrogram to get the refined final output.

C. Audio Synthesizer

The predicted mel-spectrogram is converted to waveform
by a Parallel WaveGAN (PWG) neural vocoder trained on
our dataset. PWG’s modified non-autoregressive WaveNet
generator makes it the state-of-the-art choice regarding audio
quality and inference speed. Furthermore, its disjoint-training
adversarial setup achieves high data efficiency, which is in-
strumental considering the scarcity of singing data. Specific
to our SVS task, PWG has also shown superior robustness
in synthesizing extended notes compared to its counterparts
MelGAN and WaveRNN in our preliminary experiments.

V. EXPERIMENTS AND ANALYSIS

A. Dataset

MPop600 is a singing voice database compiled in our prior
work [22]. It contains 600 Mandarin pop songs sung by 2 male
and 2 female vocalists, along with their corresponding musical
scores, which were semi-automatically transcribed. Each audio
contains a single vocal without any background music, and
only the first verse and the chorus were recorded. Within the
scope of this paper, we built a SVS system that focuses on one
vocalist; 150 songs sung by the same female singer (female 1
in Fig. 3) were utilized for the experiment. This subset contains

about 3 hours of audio recorded at 96 kHz sampling rate with
a resolution of 24 bits per sample, but were down-sampled to
22.05 kHz for the experiment. We chose 3 songs for validation
and 2 songs for testing.

B. Experimental Conditions

In training the Tacotron2-based network for predicting mel-
spectrograms and the PWG for audio generation, the hyper-
parameters and training setups were set to be the same
configurations as in [8] and [14], respectively. In this research,
five models were constructed to evaluate the effect of duration
models in SVS:
• model 1: without informing Tacotron2 of the phoneme

duration,
• model 2: the LSTM-based duration model [5],
• model 3: the proposed rule-based duration model,
• model 4: model 3 with tonality consideration, and
• model 5: model 4 with data augmentation.
To verify the necessity of a duration model for SVS, model 1

is trained by feeding phoneme-level input sequences into a
regular Tacotron2 without informing the phoneme duration [8].
Complying with the architecture in Fig. 5, model 2∼5 were es-
tablished to compare the effect of different duration models in
SVS. We trained model 2 with an LSTM-based duration model
following the paradigm of prediction and post-processing
set out by Kim et al. [5] as the baseline for comparing
the performance of the proposed rule-based duration model,
denoted as model 3.

In addition, since Mandarin is a tonal language, model
4 considered Mandarin tonality by adding a rule 0 before
rule 1 in the algorithm, which has the same condition and
implementation as in rule 1 but has to meet the requirement
of the same tonality. This imposed a stronger restriction of
estimating the phoneme duration of a stretched Mandarin
syllable. Furthermore, model 5 applied data augmentation
to stretch the audios in the training set by 1.5 times using
iZotope RX74. Tempos of the corresponding musical scores
were also slowed down by 1.5 times, but phoneme durations
were re-detected by forced alignment. As a result, this gave
the training set more data with a variety of note lengths that
can be matched with testing data in rule 1, which is the most
promising rule in the algorithm.

C. Evaluation Items

To evaluate the accuracy of the fundamental frequency (F0)
of the singing voice, F0 was extracted by a pre-trained CREPE
pitch detector5 [29] from the synthesized audio. After that,
root-mean-square error of F0 (F0 er.) in the unit of semitone
(use base-2 logarithm and multiplied by 12) and F0 correlation
(F0 cor.) between the reference audio and synthetic voice were
calculated. For fair comparisons against a performance upper
bound, the reference audio was also generated via re-synthesis
from the ground-truth mel-spectrograms directly using PWG.

4https://www.izotope.com/en/products/rx/features.html
5https://github.com/marl/crepe
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Fig. 7. Comparison on attention alignments w/ or w/o a duration model.

Additional objective metrics, including root-mean-square error
and correlation of phoneme duration (Dur er. and Dur cor.),
and mel-cepstral distortion (MCD), which is commonly used
for synthesized speech quality assessment, are all presented in
Table I.

Moreover, a listening test was carried out, and the mean
opinion score (MOS) among the 15 subjects who participated
in the evaluation are shown in Fig. 6. The participants were
instructed to make their judgment based on the pitch and
pronunciation accuracy of the generated voices and give an
overall rating with a scale from 1 (poor) to 5 (good).

D. Evaluation on Overall Performance

The evaluation results in both Table I and Fig. 6 show that
model 1 gave the worst performance due to the coarse-grained
alignment of directly mapping from phoneme-level to frame-
level (see the first panel in Fig. 7). In contrast, model 2∼5
exhibited the same trend illustrated in the second panel of
Fig. 7 which demonstrates the attention alignment between
frame-level encoder step and that of the decoder. The pre-
expansion of features not only increases the model capacity
for the richer information, but also enhances the precision
and accuracy of alignment. It is significant to realize that the
jeopardy of alignment mismatch is not just reflected in the
tempo but the comprehensive quality of the synthesis since it
impacts the decoded mel-sequence containing the information
of F0, timbre, and pronunciation.

On top of that, the rule-based model outperformed the
LSTM-based model in all aspects as shown in both objective
and subjective evaluations. Fig. 8 compares the F0 contour
generated by the reference audio, model 2, and model 3 for
one particular singing example. It demonstrates that the rule-
based duration model produced a pitch contour that was more
consistent to that of the reference audio. These results confirm
the effectiveness of our phonology-based duration prediction
algorithm.

In addition, as Mandarin is a tonal language, we added the
tonality consideration before rule 1 and observed improve-
ments across the evaluation metrics of model 4. It verifies that
the phoneme duration may depend slightly on the tonality.
Furthermore, when we augmented the data by time stretching,
the overall performance of model 5 improved both subjectively
and objectively. This may be due to the availability of more
exemplars that met the requirement of rule 1.

Fig. 8. Examples of F0 contour for SVS with LSTM duration model (NN-
based) and the proposed duration model (rule-based), as compared against the
reference audio.

Fig. 9. Preference distribution for rhythm on each paired group.

E. Evaluation on Duration Model by Listeners’ Preference

To examine the rhythmic performance, another subjective
evaluation was conducted in the form of a blind A/B pref-
erence test, and the results are summarized in Fig. 9. The
15 subjects were requested to listen to the reference audio
before comparing the same song segment generated by two
different models, and select the one with a relatively more
natural rhythm. The comparison consists of model 1 vs. 3
(duration informed or not), 2 vs. 3 (NN-based vs. rule-based),
and 3 vs. 5 (more consideration on 3). It turned out that
80% supported model 3 rather than model 2. This preference
result might be mainly because that the low predicted duration
error in model 3 ensured the naturalness of perceived singing
rhythm. The preference toward model 5 vs. model 3, however,
did not come out as definite as suggested by the MOS.

VI. CONCLUSIONS

In this research, we established a rule-based duration model
inspired by linguistic observations on Mandarin phoneme
durations. This proposed model aimed to achieve a natural
rhythm in SVS tasks even with small datasets. Both the
literature review and our statistical analyses on the dataset
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supported the proposed model’s fundamental assumption that
initial ratios in different stretched syllables should display
little variation. With this principle, our duration prediction
algorithm multiplies the note length with the predicted initial
ratio to obtain the estimated phoneme duration. The duration
information is incorporated through a length regulator into our
end-to-end SVS system composed of a Tacotron2-based acous-
tic model and a PWG vocoder. In our experiment, phoneme
durations obtained through forced alignment were used in
training and predicted durations were used in inference. The
experiment compared SVS models with different duration
model setups and showed that the proposed rule-based model
outperformed its NN-based counterpart comprehensively in
terms of naturalness of rhythm, pitch, and pronunciation.
Finally, the inclusion of the tonality consideration and data
augmentation was shown to have enhanced the quality of
the synthesized singing voice by providing fine-grained align-
ments between the encoded and decoded sequences.
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