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Abstract— This paper presents a Convolutional Autoencoder 

based Deep Learning model for identification of Red Palm 

Weevil acoustic emissions from other background noise.  Mel 

spectrogram of acoustic samples was chosen as the extracted 

feature for the proposed model.  The designed Convolutional 

Autoencoder was trained using Mel spectrogram images of Red 

Palm Weevil acoustic activities which are regarded as the 

normal instances. Unbiased evaluation of the model was done 

with a test dataset composed of normal RPW acoustic emissions 

as well as anomalous acoustic samples.  The model could achieve 

a very high classification accuracy of 95.85%.  The results 

confirmed that the proposed method is highly efficient for the 

identification of Red Palm Weevil signals. 

 
Keywords—Convolutional Autoencoder, Deep Learning , Mel 
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I. INTRODUCTION 

Red Palm Weevil (RPW) is a pest species regarded as a 

fatal enemy of coconut and date palms, posing major threat 

and severe economic losses to palm cultivation worldwide. 

The insect lays eggs inside the palm and its entire life cycle is 

completed inside the tree.  The larvae actively feed on the soft 

tissues inside the stem or crown causing severe damage to the 

tree.  During early stages of infestation, there will not be any 

visible symptoms and is difficult to be traced from outside the 

tree.  However, the feeding activity of the larvae causes feeble 

acoustic signals, which can be captured and processed to 

identify its presence.  

Identifying the feeble acoustic signals generated by the 

larvae is challenging, amidst the movement of petioles in 

wind, fibre breaking and other background noise.  With Deep 

Learning techniques maturing with more accurate algorithms, 

its possibilities can be harnessed to effectively detect 

infestation.  The paper proposes a technique to identify RPW 

generated signals from other sounds, based on Convolutional 

Autoencoder (CAE), a popular Deep Learning architecture.  

This paper is organized as follows.  First, the theoretical 

background of the techniques involved in this work is 

explained.  Next, the methodology adopted for the work is 

presented.  Following that, the experiments carried out and 

the results arrived at, are discussed.  Finally, the paper 

concludes with the inference from the experiments carried out. 

II. THEORETICAL BACKGROUND 

In this section, the common signal processing workflow is 

introduced in brief.  Until a few years ago, audio applications 

used to rely on traditional digital signal processing techniques 

for feature extraction.  This required a lot of domain-specific 

expertise to solve these problems and tune the system for 

better performance.  However, in recent years, as Deep 

Learning becomes more and more prevalent, it has seen 

enormous success in handling audio data.  Most machine 

learning models do not directly operate on the raw audio 

signals.  Instead, the common approach used is to convert the 

audio data into images for feature extraction, and then use any 

image processing architecture to process those images. 

 

A. Mel Spectrograms 

 

Recently, what has been prominent is that, the raw audio is 

first transformed from the time domain to the frequency 

domain, exploiting the fact that arbitrarily complex audio 

signals can be represented as a combinations of simple 

sinusoids. In practice, this is done using the Short-Time-

Fourier Transform (STFT).  The STFT applies the discrete 

Fourier transform on small overlapping blocks of the raw 

audio to account for signals whose frequency characteristics 

change over time.  The output of the STFT is a matrix of 

dimension F×T with F frequency bins and T time frames and 

is called the spectrogram. 

Humans do not perceive frequencies linearly.  Most of what 

humans hear are concentrated in a narrow range of frequencies 

and amplitudes.  

To account for the fact that the human perception of 

frequencies are logarithmic in nature, i.e. more discriminative 

at lower frequencies and less discriminative at higher 

frequencies, one further transforms the frequency bins of a 

spectrogram into the Mel-scale using the Mel-filter bank that 

is composed of overlapping triangular filters [1].  The formula 

for converting frequency  𝑓  to Mel scale  is: 

 

                    m=2595 log10  1 +
𝑓

700
                          (1) 
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The Mel spectrogram is used to provide the models with 

realistic sound information similar to what a human would 

perceive.  Mel filter bandwidth is small for low frequencies 

and increase in width for higher frequencies as shown in     

Fig. 1.  

 
Fig. 1   Filter banks on a Mel scale 

 

The filters combine the energy of consecutive frequency 

bins to describe how much energy exists in various frequency 

regions.  Finally the log of the energies is taken to convert 

from amplitude to decibel (dB).  The resulting Mel-

spectrogram is a compact visual representation of the audio 

that can be used as an input to a machine-learning pipeline. 

Moreover, the Mel spectrogram can be treated as an image of 

the underlying signal and one can therefore utilize computer 

vision approaches for its processing. 

B. Convolutional  Autoencoder 

As an unsupervised learning method, autoencoder (AE) is 

designed to extract useful features from unlabeled data, to 

remove input redundancies [2] and to carry out dimensional 

data reduction.  An autoencoder consists of two parts: encoder 

and decoder as illustrated in Fig. 2.  

 
                      Fig. 2  The architecture of an autoencoder 

 

The encoding function 𝑓  with several hidden layers, will 

encode the input data ‗ 𝑥𝑖 ‘ to a compressed domain 

representation. 

                         y = 𝑓(𝑊 ∗ 𝑥𝑖 +  𝑏)                                  (2) 

 

where, W is weights between input 𝑥𝑖  and latent space 

representation y, and b is the bias.  The hidden layer nodes 

learn the specific attributes of the input data. 

The decoder function 𝑓′will try to reconstruct the input 

‗ 𝑥𝑖 ‘ from that compressed representation, which can be 

expressed as:  

                              𝑥 𝑖 = 𝑓′(𝑊’ ∗ y + 𝑏′)                             (3)    

                              

where, 𝑊’ is the weights between latent space representation 

y and reconstructed output  𝑥 𝑖 ,  𝑏
′   is the bias. 

The expectation from an autoencoder is twofold.  Firstly, 

the autoencoder should be sensitive enough to the input for 

accurate reconstruction.  The other expectation from an 

autoencoder is, it should be insensitive enough so that it does 

not memorize the input data.  These conflicting requirements 

are decided actually by designing  cost function. 

The principle of training is to minimize the reconstruction 

error, which can be realized by minimizing the following cost  

function 𝐽AE given as:  

 

                                 𝐽AE = 1/𝑝 𝐿(𝑥𝑖 , 𝑥 𝑖)
𝑝

𝑖=1
                           (4) 

 

Where 𝑝 is the number of input images, 𝑥𝑖  is the i-th input 

image and 𝑥̂𝑖  is the reconstructed image corresponding to 

𝑥𝑖 .  𝐿(𝑥𝑖 , 𝑥 𝑖) represents the reconstruction error of the input 

image, which can be measured by mean squared error (MSE)  

or binary cross entropy.  In this study, the MSE between the 

input image 𝑥𝑖  (i=1,2,…p) and the reconstructed image  𝑥 𝑖  
(i=1,2,…p) is used. Correspondingly, 𝐿(𝑥𝑖 , 𝑥 𝑖 ) can be 

expressed as: 

                            𝐿 𝑥𝑖 , 𝑥 𝑖  = || 𝑥𝑖  - 𝑥 𝑖  ||
2
                                  (5) 

  

Convolutional Autoencoder (CAE) combines the local 

convolution connection with the autoencoder, which is a 

simple step that performs convolution operation to the inputs. 

The Convolutional layers are used to extract features from 

input images.  Correspondingly, a convolutional autoencoder 

consists of convolutional encoder and convolutional decoder. 

The convolutional encoder, which includes convolutional 

filters and subsequent pooling operations, realizes the process 

of conversion from the input to the feature maps, while the 

convolutional decoder implements the conversion from 

feature maps to outputs.  CAEs are more advantageous since 

it requires smaller memory because of the concept of 

parameter sharing [3]. 

III. METHODOLOGY 

The proposed CAE based architecture regards RPW 

acoustic emissions as normal instances and all other acoustic 

samples other than RPW emissions as anomalous samples. 

This method is basically formulated on the idea that, when an 

anomaly occurs, the reconstructed images will be quite 

different from that of normal instances, which has been used 

for training an autoencoder model.  The method involves 

three basic steps: training and generation of autoencoder 

model, determination of reconstruction error threshold and 

finally, testing the accuracy of the generated model as 

illustrated in Fig. 3, Fig. 4 and Fig. 5 respectively.  The 

training is done with extracted Mel spectrogram input images 

of RPW signals.  After training the model, it is expected that 

the reconstruction error of normal events must be lower than 

that of the abnormal events.  Based on the statistical 

parameters of the reconstruction error distribution, an optimal 

anomaly detection threshold is computed [5].  Then this 

thresholding is applied to test images to classify it as normal 

or  anomaly instance. 
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A. Training and generation of Autoencoder model 

 

 

 

 

 

 

 

 

 

 

 
               Fig. 3 Training and generation of autoencoder model 

 

The RPW signal captured using data acquisition system 

was segmented into frames of 1 second duration.  These 

frames were used to generate Mel spectrogram images. For 

training a model, ample amount of data was required.  Data 

augmentation method was adopted to generate sufficient 

number of training and validation datasets.  Both the training 

and validation datasets were subjected to pre-processing, 

which resizes the images and scales the pixel values.  A series 

of Convolution, max pooling and up-sampling operations 

were used for learning the image features to develop the 

model.  

B. Determination of reconstruction error threshold for 

normal data  

 

 

 

 
 

                  
           Fig. 4  Determination of reconstruction error threshold 

 

The reconstruction error threshold for classifying acoustic 

samples as normal or anomalous ones is arrived at, by 

analyzing the statistical distribution of reconstruction errors 

with the training dataset.  The MSE of these images were 

computed by comparing them to the output images 

reconstructed by the model, and from the relative frequency 

distribution of MSEs a suitable threshold was identified. 

Based on the statistical properties of this distribution curve, 

reconstruction error threshold for normal data was calculated. 

C. Testing the accuracy of generated model 

 

  

 

 

 

              Fig. 5  Testing the accuracy of generated model 

 

Accuracy of the generated model is then analyzed based on 

an unbiased evaluation with a test dataset composed of 

normal and anomalous acoustic samples.  Using the model, 

the  MSE of the test data images were computed. Based on 

the reconstruction error threshold, the test images were 

classified as normal data instances or anomalies. 

IV. EXPERIMENTAL STUDY 

A. Dataset Preparation 

    Deep learning algorithm learns from data. Dataset 

preparation is regarded as the most crucial stage in developing 

any DL algorithm.  It is critical that right data in useful scale 

and format with meaningful features specific to the problem is 

prepared beforehand, to achieve consistent and better results. 

As with other deep learning applications, extensive datasets 

for conducting experimental study of red palm weevil 

acoustic activity as such is not available in public domain. 

This challenge was overcome by collecting and aggregating 

audio samples of weevil activity from infested palms with a 

custom-made data acquisition system. Suitable feature 

extraction techniques were then used to identify key features 

in data. Standard data augmentation methodologies were 

adopted to expand the dataset. 

 

1. Data Collection 

 

    The effective frequency range of red palm weevil 

acoustic emissions lies in the human audible range of 800 - 

4000Hz.  A custom-made portable Data Acquisition System 

(DAQ) was developed in-house.  

    For training the autoencoder model, only a labeled set of 

normal (weevil acoustic) samples were needed. The 

performance of model was then evaluated on labeled set of 

RPW activities and an unlabeled set of anomalous samples 

which includes sounds due to petiole movements in wind, 

birds and animal sounds, human talks, machine sounds etc, 

which were also acquired using the custom-made DAQ. 

 

2. Feature Extraction 

 

    As mentioned earlier, Mel Spectrograms are the most 

widely used feature extraction technique for deep learning 

applications using audio data.  This method is particularly 

popular as it approaches the audio classification problem as a 

2D image classification problem.  

   The audio signal acquired from infested palms using the 

custom-made DAQ at a very high sampling rate of 50 KHz, 

was segmented into frames of 1 second duration, around the 

occurrence of RPW acoustic activities.  Mel Spectrograms of 

such segments were generated, making use of Python package 

‗Librosa‘.  Spectrograms were generated with a window 

length of 2048 samples (approx. 40 ms duration) and a hop 

length of 512 samples, with 196 Mel filter banks.  Resulting 

spectrograms were saved as 196x196  images with 24 bit 

depth in RGB format. 

    Similar to preparing training and test normal datasets 

from infested palms, the test anomaly dataset for evaluating 

model was generated with audio data collected from healthy 

palms as shown in Fig. 6. 
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           Fig. 6  Mel Spectrograms of normal and anomalous samples 

 

3. Data Augmentation 

 

   The performance of any deep learning model depends on 

quality and quantity of data.  In a broad sense all the deep 

learning algorithms can be considered data hungry.  Data 

augmentation methodologies expand and create variations in 

the dataset thus improving model‘s generalization ability.  It 

also prevents chances of overfitting, while training the model. 

 

   Two approaches were adopted for augmenting the 

training dataset: 

1. Time shift - Generated Mel Spectrograms from audio 

data shifted left or right in time by random amounts. 

2. Noise addition – Generated Mel Spectrograms from 

audio data after addition of some random noise. 

B. Model Architecture Design 

The input images to the proposed model are 3 layer RGB 

Mel Spectrogram images of dimension 196x196.  The CAE 

model consists of Encoder-Decoder structure, mainly 

consisting of 2D Convolution layers with multiple filters 

aimed at extracting features from the input images.  The 

proposed model was implemented with 3 such convolution 

layers as illustrated in Fig. 7.  Several experiments were 

conducted by varying the number of filters from [8, 16, 32] to 

[32, 64, 128] with filter kernel sizes from (3x3) to (5x5).  The 

effect of adding Batch Normalization after each convolution 

layer to reduce the number of training epochs, was also 

analyzed.  Experiments were also done with addition of Fully 

Connected layers between the encoder and decoder, aiming to 

train the model with non-linear feature combinations. Model 

performance with dropout and early stopping regularization 

techniques were also assessed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                 

                

                    

                    

 

                    

                   Fig. 7  Convolutional Autoencoder model Architecture 

 

Based on the results of the above conducted experiments, 

an optimum CAE model architecture was arrived at, as shown 

in Fig 7.  The model was then compiled with Adam optimizer, 

with a default learning rate of 0.001, with ‗Mean Squared 

Error‘ loss function and with a batch size of 32 for 100 epochs. 

V. RESULTS 

The model was trained using an ample training dataset 

composed of Mel Spectrogram images of RPW acoustic 

emissions, which are regarded as normal samples.  Since the 

model was trained on such samples alone, it better 

reconstructed Mel Spectrograms of RPW activities compared 

to any other acoustic samples.  The model outputs were 

compared in terms of the MSE between input and 

reconstructed image.  The more similar the reconstruction, the 

smaller was the reconstruction error. 
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   Fig. 8  Reconstruction of normal and anomalous samples using CAE model 
 

From Fig. 8, it is clear that the Mel Spectrogram of RPW 

activity has been faithfully reproduced with a small 

reconstruction error, whereas that of anomalous bird sound 

was poorly reproduced with a noticeably high reconstruction 

error. 

 

    Reconstruction error threshold to discriminate between 

the normal and anomalous acoustic activities was arrived at 

by analyzing the distribution of reconstruction errors of the 

normal training dataset. 

 
Fig. 9 Histogram and Box-plot of reconstruction error distributions of normal 

class 

 

Because of skewed distribution of errors in the normal 

dataset, a reasonable threshold was initially chosen based on 

the five-number statistics, specified in the box-plot, which 

defines the outlier limit in the distribution as  

 

                  Outlier limit = Q3 + 1.5 ∗ IQR                        (6) 

 
An unbiased evaluation of final model was then performed 

on a test dataset composed of Mel Spectrogram images of 

both normal and anomalous samples.  From the histograms of 

test data reconstruction errors, it is evident that the above 

chosen threshold gives satisfactory results. 

To arrive at an optimum threshold the performance of the 

model was then evaluated on different thresholds nearer to 

this limit based on two statistical analysis measures [6]. 

 
(a) Normal dataset  (b) Anomalous dataset 

 

Fig. 10 Histogram of reconstruction errors of test dataset 

 

1. F1-Score based on confusion matrix 

 

    The commonly used measures for evaluating model 

performance based on confusion matrix are Accuracy, 

Precision and Recall.  Accuracy shows the number of correct 

predictions out of the total predictions made for the dataset. 

Sensitivity/Recall indicates how sensitive the model is in 

detecting true positives, which in our case is the normal RPW 

acoustic activity.  This measure is important, since the cost 

associated with missing positive instances is too high as it 

leads to missing identification of infested palms.  Precision on 

the other hand, gives the measure of correctly predicted 

positive samples.  This measure is equally important since 

cost associated with detecting anomalies as RPW activities 

leads to unnecessary application of pesticides or cutting down 

of healthy palms. 

F1-Score provides a way to combine both precision and 

recall into a single measure that captures both properties. 

Higher the F1-Score better the model performance.  It is 

computed as 

 
F1-Score = 2 ∗ Precision ∗ Recall /(Precision + Recall)         (7)      

 

Accuracy, Precision, Recall, and F1-Score computed for 

different reconstruction error thresholds closer to the outlier 

limit is tabulated in Table 1.  

 
  TABLE 1. ACCURACY, PRECISION, RECALL, AND F1-SCORE AT DIFFERENT      

RECONSTRUCTION ERROR THRESHOLDS 

Reconstruction 

Error Threshold 

Accuracy % Precision % Recall % F1-

Score % 

0.001940908 85.50 96.59 73.60 83.54 

0.002109908 94.50 95.27 93.65 94.45 

0.002278908 95.85 93.17 98.95 95.97 

0.002309619 95.73 92.83 99.10 95.86 

0.002447908 94.60 90.66 99.45 94.85 

0.002616908 92.93 87.90 99.55 93.36 
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From the table, it is clear that the model better performs at 

a reconstruction error threshold of 0.002278 with very high 

F1-Score of 95.97%.  The results also show that the compiled 

model in general shows a very high accuracy of 95.85%. 

2. ROC curve and AUC value 

 

    The Receiver Operating Characteristic (ROC) curve in    

Fig. 11 shows the performance of model at all classification 

thresholds.  It gives a trade-off between TPR and FPR for the 

model at different chosen thresholds.  Area under ROC curve 

AUC, is a performance measure for the model which should 

be ideally 1. 

                                Fig. 11  ROC Curve of CAE model 

 

    From the ROC curve, it can be observed that the compiled 

model shows a very high AUC value of 0.8979.   

VI. CONCLUSIONS 

The work describes the application of CAE as the Deep 

learning technique for identifying RPW signals.  Several 

experiments were done in tuning the model parameters so as 

to arrive at an optimum design of CAE for  accurate results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that, the approach using CAE is highly 

robust to identify RPW signals from the background signals. 

The model could achieve a very high classification accuracy 

with an F1 score of 95.97%  and AUC value of 0.8979.  The 

technique provides a promising method to address the RPW 

identification problem.  
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