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Abstract—This paper presents a regularization method for
unsupervised contrastive learning and its application to speaker
verification. The proposed method, called Augmentation-
Agnostic Regularization, enhances the training of speaker
embeddings in an adversarial manner. Our main idea is to
use an augmentation seed classifier, which learns to classify
the randomization seeds used in data augmentation methods,
and to train an embedding network with a regularization term
to fool the classifier. This method prevents the characteristics
of the augmentation procedure from remaining in the embed-
dings, facilitating the extraction of speaker characteristics. In
experiments, we demonstrate the effectiveness of the proposed
regularization in two challenging data-deficient conditions,
namely a small-sample training condition and a short-utterance
testing condition, and show performance improvements over
the conventional augmented adversarial training method. The
unsupervised model trained with our method achieved compa-
rable performance with the supervised x-vector baseline model.
Index Terms: Contrastive Learning, Unsupervised Learning,
Text-Independent Speaker Verification, Data Augmentation.

I. Introduction
Unsupervised representation learning, which aims to

train an embedding network without using ground-truth
labels, has attracted increasing attention from researchers
due to its wide range of application. For speaker verifi-
cation and identification, recent studies have shown that
contrastive learning approaches are effective for learning
speaker embeddings without supervision. The basic idea of
contrastive learning is to minimize the distance between
the embeddings of two augmented utterances obtained
from a single utterance and maximize the distance between
the embeddings of different utterances. This is imple-
mented in loss functions, such as augmented adversarial
training (AAT) loss [1], generalized contrastive loss (GCL)
[2], and momentum contrast (MoCo) loss [4], [3], for
training embedding networks.

A limitation of contrastive learning is the requirement of
a large amount of training data. The cost of data collection
for unsupervised learning is generally smaller than that for
supervised learning because manual annotations are not
needed. However, training data collected from the Internet
may have unintended biases such as those regarding
gender, race, social status, and socio-economic status.
This is a problem when deploying and training networks
because biases in large-scale data are difficult to analyze

and remove. This motivated us to analyze unsupervised
contrastive learning in two challenging conditions, namely
a small-sample training condition and a short-utterance
testing condition. This research will facilitate the devel-
opment of data-efficient learning systems with small-scale
protected or private data.

A straightforward approach for fully leveraging small
and short-utterance data is to enhance the data aug-
mentation process. However, if we simply increase the
number of augmented samples, information about the
augmentation process may remain in the embeddings after
training. For example, if additive noise is used for data
augmentation, noise characteristics may remain in the
learned embeddings even if we want the embeddings to
be agnostic about noise.

The proposed method, called Augmentation-Agnostic
Regularization, overcomes this problem by using an aug-
mentation seed classifier and by training a network with
a regularization loss to fool the classifier. This is a form of
adversarial training and can be viewed as an extension of
Augmentation Adversarial Training [1]. In experiments,
we demonstrate the effectiveness of the proposed reg-
ularization method on the VoxCeleb1 dataset [5] and
the SdSVC 2021 dataset [6], [7]. This study makes the
following contributions.

1) We propose a regularization method called
Augmentation-Agnostic Regularization for con-
trastive learning.

2) We conduct experiments in two challenging data-
deficient conditions, namely a small-sample training
condition and a short-utterance testing condition,
and demonstrate that the proposed method im-
proves speaker verification performance.

II. Related Work
A. Speaker Embeddings

This paper focuses on the learning of speaker embed-
dings for text-independent speaker verification. Statisti-
cal modeling methods are commonly used to capture
speaker characteristics. For example, i-vectors [8] use a
mixture of Gaussians to estimate the distributions of
audio features such as mel-frequency cepstral coefficients
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and are often used with probabilistic linear discriminant
analysis. x-vectors [9] use a time-delay neural network
to extract embeddings. Many architectures have been
proposed, including Thin-ResNet [10], Dense-TDNN [11],
and ECAPA-TDNN [12]. For a large-scale training dataset
such as VoxCeleb2 [5], these network-based embeddings
outperform i-vectors. However, with large-scale training,
it is not always easy to avoid unintended biases such those
regarding gender and race. This motivated us to analyze
the trade-off between verification performance and data
efficiency and to explore data-efficient learning.

B. Unsupervised Contrastive Learning
Unsupervised learning, which aims to train a model

without using ground-truth labels on training samples, has
been proven to be effective for learning representations.
In particular, approaches that use contrastive learning
mechanisms are promising. For example, MoCo [3] and
SimCLR [13] use a contrastive loss function in which many
data augmentation methods are applied to improve ro-
bustness against perturbations such as noise. They achieve
image recognition performance comparable to that of su-
pervised learning. Contrastive learning methods have been
proposed for speaker verification. Generalized contrastive
loss [2] for speaker verification works without supervision
or with semi-supervision. AAT [1] uses a contrastive loss
that separates speaker information from channel informa-
tion. MoCo and SimCLR have been applied to speaker
verification [4]. With these methods, MUSAN noise [14]
and room impulse response (RIR) data [15], [1] are often
used for data augmentation. For short-utterance speaker
verification, most methods rely on supervised learning [6].
Examples include adversarial training using generative
adversarial networks [20], [19], teacher-student learning
[18], meta learning on imbalanced-length utterances [21],
and extended probabilistic linear discriminant analysis
models [16], [17]. An evaluation of unsupervised learning
in a short-utterance testing condition would be interesting
as a next step.

III. Proposed Method

This section presents the proposed method, called Aug-
mentation -Agnostic Regularization. An overview of the
learning framework is given followed by the details of
the method. Our main idea is to use an augmentation
seed classifier and to train an embedding network with a
regularization term to fool the classifier. This is a form of
adversarial training and can be viewed as an extension of
Augmentation Adversarial Training [1].

A. Overview
Let X be a set of unlabeled samples (utterances) for

training. The goal is to train an embedding network E,
which maps samples x ∈ X into a real-valued vector space
as z = E(x) ∈ Rd. Figure 1 shows an overview of the

Fig. 1. Framework overview.

framework, which uses the sum of two losses for training:

L = LCL + λLR, (1)

where LCL is the contrastive loss, LR is the augmentation-
agnostic regularization (AAR) loss, and λ is a weighting
hyperparameter. We use the unsupervised extension [1],
[2] of angular prototypical loss [24], [25] for LCL. The
details of the regularization are described below.

The AAR loss is defined with an augmentation seed
classifier, which is placed at the top of the embedding
network. Here, T denotes the augmentation function,
which generates an augmented sample x̃ by

x̃ = T (x, s), (2)

where x is an input and s is the seed used for random-
ization. For simplicity, we assume that the number of
seeds is finite. The number of seeds is denoted by S, i.e.,
s ∈ {1, 2, · · · , S}. The augmentation seed classifier D is a
discriminator that predicts the seed s from the augmented
sample x̃ as follows:

ŝ = D(x̃), (3)

where ŝ is the predicted seed. In the training phase,
the augmentation seed classifier D learns to classify
seeds and the embedding network E learns to fool D.
This adversarial training strategy is implemented with
a gradient reversal layer (RevGrad) [26], as shown in
Figure 1.

B. Metric Learning
For training the augmentation seed classifier, the stan-

dard cross-entropy loss is not a good choice in practice
because S is typically very large. The proposed framework
thus uses metric learning.

The basic idea of metric learning is to minimize
the anchor-positive distance d(xa, xp) and maximize the
anchor-negative distance d(xa, xn), where xa is a randomly
sampled anchor, xp is a positive sample that has the
same ground-truth label as that of the anchor, and
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Fig. 2. Data augmentation process and triplets for computing augmentation-agnostic regularization loss. (a) Six augmented samples obtained
for two examples, x1 and x2, with three seeds, namely s1, s2, and s3. (b) Two-step data augmentation for a single sample x. Nine augmented
samples x̃ij are obtained with three-by-three seeds. (c) Four triples for x11 with positive samples and hard negative samples.

xn is a negative sample that has a different ground-
truth label from that of the anchor. These distances are
often computed over triplets (xa, xp, xn). A naive method
for obtaining triples for training the augmentation seed
classifier is to repeat the following three steps.

1) Draw an anchor xa from X, where X = {x̃ : x ∈ X}
is a set of augmented training samples generated
with randomly selected seeds.

2) Draw a positive sample xp from
Xp = {x̃ ∈ X : ℓ(x̃) = ℓ(xa)} \ {xa}, (4)

where ℓ(x̃) = s is the seed used in data augmenta-
tion.

3) Draw a negative sample xn from
Xn = {x̃ ∈ X : ℓ(x̃) ̸= ℓ(xa)}. (5)

Note that ℓ(·) indicates ground-truth labels, and seeds
are used as labels. Figure 2a shows an example where
two samples, x1 and x2, are augmented with three seeds,
namely s1, s2, and s3. In this case, D learns to classify
these three seeds. However, this problem is difficult to
solve if the two original samples x1 and x2 are far from
each other.
C. Local Triplets with Hard Negatives

To overcome the above problem, we locally optimize
the augmentation seed classifier by generating triplets
around each training sample. Specifically, we apply two-
step augmentation to each sample x as follows to make
triplets around it:

x̃ij = T2(T1(x, s
1
i ), s

2
j ), (6)

where T1 and T2 are augmentation functions and s1i and
s2j are seeds for i = 1, 2, · · · , N1 and j = 1, 2, · · · , N2,
respectively. This means that we obtain a set of N1 ×N2

augmented samples around x:
X = {x̃ij : 1 ≤ i ≤ N1, 1 ≤ j ≤ N2}. (7)

Figure 2b shows an example where N1 = 3 and N2 = 3.
From the obtained set of augmented samples X, triples

are made using the following two steps.
1) Make a set of anchor-positive pairs by

SP =
∪

xa∈X

{(xa, xp) : xp ∈ Xp}, (8)

where Xp is a set of positive samples given by

Xp = {x̃ ∈ X : ℓ2(x̃) = ℓ2(xa)} \ {xa}, (9)

and ℓ2(x̃) = s2 is the second seed used in the two-
step augmentation.

2) Make a set of triplets by

ST =
∪

(xa,xp)∈SP

{(xa, xp, xn) : xn ∈ Xn}, (10)

where Xn is a set of negative samples given by

Xn = {x̃ ∈ X : ℓ2(x̃) ̸= ℓ2(xa), ℓ1(x̃) = ℓ1(xp)},
(11)

and ℓ1(x) = s1 is the first seed used in the two-step
augmentation.

In the second step, Eq. (11) introduces the restriction
ℓ1(x) = ℓ1(xp) to select hard negative samples. Figure 2c
shows an example with x̃11 as an anchor. In this case, we
obtain two anchor-positive pairs (colored red) in the first
step. Each pair has two hard negatives (colored green and
blue).

Finally, we obtain |ST | = N1N2(N1−1)(N2−1) triplets
from a single sample x. This rich number of locally
generated triplets enhances contrastive learning even if
the number of training samples is small.
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D. Definition of Loss
Given a mini-batch B, the AAR loss is defined over

generated triplets as follows:

LR =
1

|B||ST |
∑
x∈B

∑
τ∈ST

L(xa, xp, xn), (12)

where τ = (xa, xp, xn) is a triplet and L(xa, xp, xn) is the
metric learning loss. Notably, if the loss is symmetric with
respect to the anchor-positive pairs, i.e., if L(xa, xp, xn) =
L(xp, xa, xn), half of the triplets are redundant, and thus
we only need |ST |/2 triplets to compute the loss. In the
following, we show two definitions for L.
Triplet loss [22]. This loss is a standard metric leaning loss
defined over triplets with a margin hyperparameter m. It
is given by

L(xa, xp, xn) = max(0, d(ha, hp)− d(ha, hn) +m), (13)

where ha, hp, and hn ∈ Rd′ are the output of the
augmentation seed classifier corresponding to xa, xp, and
xn, respectively, and d is the Euclidian distance.
AAT loss. This loss is used in AAT [1]. It is given by

L(xa, xp, xn) =
∑

(h,y)∈H

log
exp(h[y])∑2

y′=1 exp(h[y
′])

, (14)

where h ∈ R2 is the output of the augmentation seed
classifier. Here, the augmented seed classifier D is modified
to accept concatenated embeddings vp = E(xa) ++ E(xp)
and vn = E(xa) ++ E(xn) as proposed in [1], where ++
indicates concatenation. H attaches labels 1 and 2 to vp
and vn, respectively, i.e., H = {(D(vp), 1), (D(vn), 2)}.

IV. Experiments
A. Settings

We conducted experiments of speaker verification in
two challenging data-deficient conditions, namely a small-
sample training condition and a short-utterance testing
condition. For training, we used the VoxCeleb1 Dev set,
which consists of 148,642 utterances by 1,211 speakers.
To evaluate the performance of contrastive learning with
a small amount of training data, we varied the amount
of training data from 1% to 100% by random sampling.
The evaluation sets were VoxCeleb1 Test and SdSVC 2021
Dev, which consist of 37,611 and 7,071 verification pairs,
respectively. We also report results of our SdSVC 2021
submission. The evaluation measures are the equal error
rate (EER) and the minimum detection cost function
(MinDCF).

B. Implementation Details
All models were implemented in PyTorch [23]. Specif-

ically, we followed the settings in [1] with the official
implementation 1 The details are as follows. The backbone
network is ResNetSE34L. The contrastive loss LCL in

1https://github.com/joonson/voxceleb_unsupervised

TABLE I
Unsupervised learning performance. EER (%) and MinDCF are
shown for the VoxCeleb1 Test set and the SdSVC 2021 Dev set.

The VoxCeleb1 Dev set was used for training. Ours (AAT+Triplet)
is the average late fusion of Ours (AAT) and Ours (Triplet).

Method VoxCeleb1 Test SdSVC 2021 Dev
EER MinDCF EER MinDCF

Baseline 10.61 0.503 12.81 0.585
AAT [1] 10.15 0.481 11.87 0.585
Ours (Triplet) 8.65 0.407 10.76 0.536
Ours (AAT) 8.90 0.428 11.31 0.539
Ours (Triplet+AAT) 8.63 0.418 10.42 0.518

TABLE II
Effect of number of local triplets on performance. EER is shown for

the VoxCeleb1 Test set. N1 and N2 are the numbers of seeds for
the first and second augmentation functions, respectively.

# of triplets per utterance N1 ×N2 EER (%)
4 2× 2 9.55
6 2× 3 9.16
6 3× 2 8.95
8 2× 4 9.05
8 4× 2 8.93
9 3× 3 8.86

Eq. (1) is the unsupervised version of the angular pro-
totypical loss [24], [25]. The data augmentation process
consists of random cropping (segment length = 240) and
the noise or RIR augmentation [1], where MUSAN noise
[14] or RIR is applied with the default hyperparameters.
For the proposed AAR loss, random cropping was used
as the first augmentation T1 and the noise or RIR
augmentation was used as the second augmentation T2.
The number of random seeds in Eq. (7) was set to N1 = 3
and N2 = 3. For each utterance, N1 + N2 seeds were
randomly chosen by the numpy.randint function, and then
these seeds were used to generate N1 × N2 augmented
samples, as in Eq. (6). The augmentation seed classifier
was a network that consisted of two blocks of a fully-
connected layer (hidden size = 512), ReLU activation,
and batch normalization. The output dimension was 64
for triplet loss (with margin m = 1.0) and 2 for AAT
loss for its binary classification. For training, the ADAM
optimizer was used for 150 epochs. The learning rate was
0.001; it decayed by 0.95 every 5 epochs. λ was set to
5.0. The batch size was set to B = 150. A single NVIDIA
P100 GPU was used for training.

C. Results
Table 1 shows the unsupervised learning performance

for four methods, namely the baseline without using
regularization loss, the conventional AAT loss [1], and
the proposed AAR loss with triplet loss and AAT loss
(see Sec. 3.4). Our method outperforms the conventional
method on both VoxCeleb1 Test and SdSVC 2021 Dev
in terms of EER and MinDCF. This confirms the effec-
tiveness of AAR for contrastive learning. There was no
significant difference between the use of triplet loss and
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TABLE III
Small-sample training performance. Unlabeled utterances randomly
sampled from the VoxCeleb1 Dev set were used for training (1% of

data includes 1.5k utterances). The i-vector result is from [1].

Amount of Training Data
1% 2% 5% 10% 20% 50%

AAT 20.74 15.45 13.91 12.85 11.68 10.89
Ours 16.57 14.35 12.89 11.95 10.44 9.84
i-vector 15.28

TABLE IV
SdSVC 2021 submission results. EER is shown for the SdSVC 2021

Test set. We use the VoxCeleb1 Dev set for training, and the
non-speech subset of MUSAN noises and RIR for augmentation,

following the evaluation plan of SdSVC 2021. The x-vector baseline
is trained on VoxCeleb1 and VoxCeleb2, and the full set of

MUSAN and RIR is used for augmentation.

Method Voxceleb1 SdSVC 2021
Test Dev Test

Ours (Triplet) 9.16 11.17 10.96
Ours (AAT) 9.09 11.17 11.06
Ours (Triplet + AAT) 8.86 10.95 10.49
x-vector (supervised) - 8.11 10.65

AAT loss. This means that the proposed triplet genera-
tion algorithm is mainly responsible for the performance
improvement.

Table 2 shows the effect of the number of local triplets
on performance. EER decreases with increasing number of
local triplets N1×N2. This supports our assumption that
the local optimization of the metric space with augmenta-
tion helps contrastive learning. Table 3 shows the results
obtained in the small-sample training condition, where a
subset of the VoxCeleb1 Dev set was used for training. The
results confirm that AAR improves performance regardless
of the number of training samples. Even with 2% of the
utterances from the VoxCeleb1 Dev set, the proposed
method outperforms the i-vector baseline [8], [1]. The
proposed method will thus facilitate the development of
learning systems that use small-scale protected data for
training.

Table 4 summarizes the results of our SdSVC 2021
submission. We used the VoxCeleb1 Dev set for training
and the non-speech subset of MUSAN noises (omitted
music and noise) and RIR for augmentation, because
augmentation using speech data is prohibited. If we
compare results in Table 1 and Table 4, this change caused
a small performance drop. Finally, on the leaderboard, our
method achieved comparable performance with the official
supervised x-vector baseline, which is trained on the Vox-
Celeb1 and VoxCeleb2 Dev sets. As future work, analyzing
and improving the datasets for data augmentation would
be interesting as a next step.

V. Conclusion
This paper proposed a method called Augmentation-

Agnostic Regularization for unsupervised contrastive

learning that uses an augmentation seed classifier for
adversarial training. Experiments on VoxCeleb1 and
SdSVC 2021 datasets showed that the proposed method
improves speaker verification. We hope that this work
will facilitate the development of data-efficient learning
systems with small-scale protected or private data.
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