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Abstract—The embedding and transmission of secret informa-
tion through multimedia such as images can be used to achieve
privacy in medical and military applications. This form of covert
communication is called steganography. As images are also used
for training machine learning algorithms for medical diagnosis,
it is important to evaluate if embedded data within images
have adverse effects on the performance of medical machine
learning models. This paper evaluates the effect of a previously
developed steganographic algorithm called the C4S algorithm
on deep machine learning models for malaria diagnosis. The
steganographic algorithm is used to hide patient data in malaria
blood smear images. Both original and watermarked images are
used to train different models using deep learning algorithms.
The goal is to determine the effect of steganography on deep
machine learning algorithms. The deep learning models are used
to predict if a blood smear image has a malaria parasite or not.
The results show that the basic Convolutional Neural Network
(CNN) model trained with combined watermarked and non-
watermarked images has the best prediction accuracy of 97.85%.
Basic CNN trained with only non-watermarked medical images
performed better on the watermarked test set with an accuracy of
97.65% as opposed to lower performance on a non-watermarked
test set at 94.50%accuracy. We conclude that it is a false general-
isation to assume that medical image steganography reduces the
classification accuracy of machine learning algorithms. Instead,
medical image steganography algorithms should be subjected to
clinical trials and approved on a case-by-case basis for use in
digital health applications

I. INTRODUCTION

Steganography is an information hiding technique which
embeds information in a cover or host while maximising
both the capacity of the hidden information and the fidelity
of the cover or host [1], [2]. Some of the examples of the
cover or host are network traffic statistics, email message,
images, audio and video. Steganography is a form of covert
communication in which the existence of a communication
channel is concealed and only authorised receivers can view
the message.

Management of medical records is one of the recent appli-
cations of information hiding where Covert or steganographic
channels can be used to secure patients’ health information
using medical images as cover [3]. To aid medical care,
artificial intelligence (AI) and deep learning algorithms are
used to aid diagnosis using the medical images. When these
images contain medical records as hidden data, it is important
to investigate the effect of this embedded information on

the accuracy of the deep learning algorithm for medical
diagnosis. As different, machine and deep learning algorithms
have different levels of robustness of their input features, it
is also important to investigate which of the available deep
learning algorithms will be the most resistant to any effect of
steganography.

The study in [4] tested watermarked Fundus eye scans
against some models [5], [6] used to classify Healthily, Macu-
lar Edema and Central Serous Chorioretinopathy (CSCR) eyes
diseases. The accuracy of their models trained with original
data ranged from 95% to 100%. Their results show that there
was no difference in classification accuracy for the original and
watermarked test set. However, few test data were used (15 to
45). Also, it was not clear if the original model was trained
with watermarked training set. Again, this study failed to
recognise that if watermarking is adopted for integrity checks,
future training sets would contain watermarked data and not
just the test data.

Garcia-Hernandez et al in [8] performed an objective eval-
uation of the impact of watermarking on computer-aided
diagnosis in medical imaging. Two watermarking algorithms
were used on half of the samples. They tried to establish the
effect of spread Spectrum DCT (SS-DCT) and High Capacity
Data Hiding (HCDH) watermarking on the segmentation and
classification accuracy of the lesions in the image. They
found that with an appropriate choice of parameters, both
watermarking systems can perform well without any adverse
effect on segmentation and classification accuracy. However,
SS-DCT could alter the accuracy if high embedding strength
is used. Their approach is most related to our work but not
in the area of pneumonia disease classification using X-ray
scans. Besides, they used only about 500 Breast Ultrasound
as their dataset.

In our previous work in [9], [13] we developed the C4S
steganographic algorithm [2], [14] and used a traditional ma-
chine learning algorithm called support vector machine (SVM)
to evaluate the impact of steganography on the classification
accuracy of Pneumonia disease. Four feature sets: contrast,
homogeneity, energy and entropy were used to train the SVM
model. These features were extracted before watermarking
and after different amounts of watermark bits were inserted
into an 8x8 block of the X-ray image. Apart from recall,
other machine learning parameters such as accuracy and
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precision linearly degraded with increased watermark. This
notion helped us to improve the C4S algorithm.

In this paper, we leverage the C4S steganographic algorithm
[2], [9], [14] to adding watermark to malaria blood smear
image samples. these samples were originally curated for
training machine learning algorithms for malaria case finding.
We have chosen to apply deep learning instead of traditional
machine learning because of the ability of deep learning
algorithm to extract detailed features that are robust against
various attacks. This feature could make it more resilient and
robust to steganographic modifications. Conversely, we need
to establish the if the C4S algorithm and associated images
can be safely used for deep machine learning training without
compromising the accuracy of the models. Hence, we make
the following contributions:

1) ascertain the robustness of deep learning algorithm to
C4S algorithm.

2) compare the accuracy of the machine learning algo-
rithms when they are trained with images containing
secret watermark and clean original images.

3) evaluate the impact of the C4S on deep learning using a
large medical image dataset unlike the smaller datasets
used in existing literature and our previous works.

While we describe our methods in the next section, we
present our results in Section III. We then discuss the impli-
cations of these results in Section IV and conclude the work
in Section V.

II. METHODS

We divide this section into the steganographic algorithm and
the Deep learning algorithms employed in this paper. This is
because we first apply the steganographic algorithm images to
the blood smear images before deep learning training.

A. Steganographic Algorithm

The C4S spread spectrum algorithm [2], [14], which has
been previously developed was applied in this research. A
summary of the C4S insertion strategy is shown in Figure
1.
C4S is an additive spread spectrum steganographic tech-

nique used for either fragile, semi-fragile, or robust watermark-
ing. These variation in the application of C4S are achieved by
adjusting the parameters ρ and ε (epsilon). The parameter, ρ
is a real-valued number agreed between the sender and the
receiver. It is embedded in such a way that the correlation
value at the receiver between an image sub-block, Xi and a
secret-key-generated sequence, W equals ±ρ± ε. Hence, ε is
a control parameter for determining the level of fragility (or
robustness) of the watermarking algorithm. In general, ε < p. ε
is a tolerance parameter. G is a gap required between insertion
zones to detect tampering.

1) Embedding Function: The C4S embedding function
follows the classical spread spectrum additive embedding
method:

Table I: Steganographic Algorithm Hyperparameters

Parameter Value

1. Bits per block 0,1 and 4
2. ρ 0.6
3. ε 0.5
4. Channel gap , G 2

Yij =

{
Xij + αWij , if sk = 1

Xij − αWij , if sk = 0
, (1)

where Y is watermarked image block, X is the cover image
block, α is the embedding strength which depends on ρ and
G, and W is a Pseudo random sequence code. Y, X and W
are almost of the same dimension, m × n. i and j refer to
individual pixels in the kth sub-block from the global image
X and Y.

2) Extraction Function: The desired constant correlation,
ρ, at the receiver is any real number agreed in advance
between the sender and receiver. This means that decoding
function needs to output values in the range ±ρ±ε for correct
watermark detection within an image sub-block. This gives us
the watermark decoding function:

s =

{
0, if r = 〈Y,W 〉 = ρ± ε
1, if r = 〈Y,W 〉 = −ρ± ε

, (2)

where ε is the tolerated error deviation from unintentional
attacks, noise and quantisation errors. The expression 〈Y,W 〉
is the linear correlation between Y and W . In general:
0 < ε ≤ ρ.

Further details about C4S design and algorithms can be
found in [7].

3) Performance measures: In watermarking and steganog-
raphy, the perceptual and structural distortion of an image are
measured by Peak Signal-to-noise ratio (PSNR) and Structural
Similarity Index Measure (SSIM).

PSNR is the ratio of the original cover over the noise
(standard error) introduced by watermarking.

PNSR = 20 ∗ log2
B√
MSE

(3)

B is the largest value of signal or the dynamic range for the
pixel values (2n, where n is pixel depth) and MSE is the
Mean Square Error per pixel. PSNR is a statistical degradation
measure.

SSIM is a better measure of perceptual fidelity between two
images, as proven in [10], [11].

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

Where µx, µy and σ2
x, σ

2
y are the corresponding mean and

variance of the images x and y respectively. The parameter
σxy is covariance of x and y. The value of SSIM ranges from 0
to 1, where 1 indicates perfect similarity between two images.
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Figure 1: C4S Insertion Strategy: Predefined correlation channels within the image represents groups of bits. Each channel is
separated by a channel gap, G. The width of each channel is 2ε

From steganographic perspective, performance analysis will
be examine using the above parameters. However, the major
focus of this work is on the deep learning performance
parameters as discussed in Section II-B.

B. Deep learning algorithms
Deep learning is a class of machine learning that is based

on the hierarchical feature learning of the human brain.
It is a structured arrangement of artificial neural networks
(ANN) that applies automatic feature extraction to learn good
representation from raw data [16]. This class of algorithms
is unlike the support vector machine (SVM) that we used
in [9]. In classical machine learning algorithms, features
are manually extracted from data and fed into the machine
learning algorithms. This is not the case with deep learning
algorithms. In this work, we have considered two deep learning
algorithms:

1) Basic Convolutional Neural Network (CNN) - Con-
volutional neural networks (CNN) are forms of deep
learning models that are suited for feature extraction
from structured array of data such as images. These
features are patterns such as lines, gradients, contours
and shapes. The advantage of deep neural networks such
as CNN is that they can work raw input image datasets
to extract the features they need [15]. Unlike traditional
machine learning algorithms where specific features will
be extracted and fed into the training algorithm, CNN
extracts the required features themselves. Fig. 2 shows
the general architecture of a CNN.

Figure 2: Basic CNN Architecture: We employed three
convolution layers alternated with 3 pooling layers. The output
is either malaria or healthy

A CNN is made of two major parts: a convolution tool
and a fully connected layer. Feature extraction occurs

at the convolutional layers of the CNN. Based on the
features extracted from the convolution process, the fully
connected layer predicts the class of the image. Apart
from the convolution and fully connected layers, the
input layer receives data input as images, the output
layer provides the predictions in form of labels or
probabilities while the pooling layer reduces the size
of the convolved features. There are often more than
one pooling layer as each is often placed after each
convolution layer. The stacking of layers shows why
CNN is called deep learning.

2) MobileNet Version 2 - This is a lightweight CNN model
architecture that targets machine learning deployment
into mobile devices [17]. The goal of the MobileNet
model is to optimise compute power and memory.
some accuracy trade-offs resulting from these optimal
computational and memory size improvements. The im-
provement of the Mobilenet architecture from V1 to V2
has some accuracy improvement while still maintaining
low memory size and computational cost.

The original images, obtained from the Kaggle Malaria
Parasite Detection competition [12], are first used to train each
of the deep learning classification algorithms. The images are
then watermarked with one and then with four bits of data per
8x8 block. The stego-images generated by the watermarking
system are then used to train another model. The same test set
(containing some watermarked and non-watermarked images)
are used to perform classification using the separate models
- from zero watermark, 1-bit watermark and 4-bit watermark.
There were 13076 malaria-infected blood smear images and
13054 healthy blood smear images. We then created a fourth
dataset by combining the original dataset with half of the
images from 1-bit watermarking and from 4-bit watermarking.
This gave us a fourth dataset of 25118 healthy images and
25876 malaria images. To train each model the total dataset
for each experiment were divided into 70:10:20 for training,
validation and testing, respectively.

There are four possible outcomes of a classification or
prediction algorithm: True Positive (TP ), False Positive (FP ),
True negative (TN ) and False negative (FN ). This form what
is called a Confusion Matrix, C.

C =

[
TP FN
FP TN

]
TP is a correctly predicted positive class; FP is a false
positive prediction where a subject in negative class is pre-
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dicted as being in a positive class. FN is the opposite of FP ,
where a subject in a positive class is predicted as being in the
negative class, while TN is when a negative class is predicted
as negative class.

With the confusion matrix, other performance parameters:
accuracy, recall (sensitivity), precision and F1 − score can
be defined. The equations that follow define the performance
parameters used in this study.

Accuracy is a measure of the ratio of all correct predictions,
whether positive or negative, to the entire test set. It is not a
good parameter if the number of subjects in each class is not
the same.

accuracy =
TP + TN

TP + TN + FN + FP
(5)

In this study, accuracy is the ratio of the sum images
correctly predicted as healthy and those correctly predicted
as having malaria to the number of images.

Recall or Sensitivity or True Positive Rate (TPR) is the
ratio of correct positive predictions to the total number of the
positive class (P).

recall =
TP

TP + FN
(6)

This is the ratio of the images correctly predicted as having
malaria to the total number of people who really have malaria.

Precision or Positive Prediction Value (PPV) is the ratio of
correct positive predictions to the total positive predictions.

Precision =
TP

TP + FP
(7)

In our experiment, this is the ratio of the number of images
with malaria to the number of those predicted as having
malaria.

The F-score is a measure of a test’s accuracy and it is
computed from precision and recall. F1-score is the harmonic
mean of precision and recall given as:

F1 − score = 2.
precision× recall
precision+ recall

(8)

F1 − score do not take true negatives into consideration.
Hence, it is a strong measure for the positive class. In this
work therefore, it is a strong measure of the ability of an
algorithm to truly detect a case of malaria from blood smear
images.

With equal class ratio, all of accuracy, precision, recall and
F1-score tend to be the same. In such situation, only accuracy
can be used to represent the performance of the algorithm on
the dataset.

III. RESULTS

A. Steganographic performance

We use PSNR and SSIM to measure the performance of a
steganographic algorithm. Figs. 3 and 4 show the PSNR distri-
bution of the healthy and malaria dataset after watermarking.

The PSNR values follows an approximate normal distribu-
tion. The lowest PSNR value out among the 26,000 images

Figure 3: Healthy: Global PSNR Distribution for 1-bit per
block

Figure 4: Malaria: Global PSNR Distribution for 1-bit per
block

is above 42 dB for both healthy and malaria datasets. The is
well above the 40dB benchmark for 8-bit medical images.

With 4-bits of medical data added per 8x8 block, we noticed
that the distribution of PSNR reduced to a mean of 32.5 dB as
opposed to 47.5dB for the 1-bit embedding capacity per 8x8
block. This is considered a significant degradation for medical
images but not for other natural images as the value is still
above 30dB.

Figure 5 shows that the SSIM value for individual 8x8
blocks are mostly unity. This means that the structural form
of the images were not degraded after embedding. However,
some image blocks whose SSIM score are less than unity
suffered some degradation. As the SSIM values are all above
0.98, the structural degradation is very minimal.

Not withstanding the interpretation we may give to the
distribution of PSNR and SSIM for the watermarked images,
the purpose of this work is to find out how they after deep
learning performance on original and watermarked medical
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(a) Healthy (b) Malaria

Figure 5: Global SSIM Distribution for the Blood Smear Dataset

images. Hence, we focus on the results provided in the next
sub-section.

B. Machine learning performance

We trained a total of five models: Basic CNN Origi-
nal, which is a B-CNN architecture trained with original
non-watermarked images; Basic CNN watermarked, which
was trained with 1-bit per 8x8 block watermarked images;
MobileNetV2 Original, which is a Mobilenetv2 architecture
trained with original non-watermarked images; MobileNetV2
watermarked, which was trained with 1-bit per 8x8 block wa-
termarked images and Basic CNN Combined, which is a B-
CNN architecture trained with 50% non-watermarked image,
25% 4-bit watermarked image and 25% 1-bit watermarked
image.

The evaluation parameters include accuracy, precision, re-
call and F1-score. However, the healthy and malaria data
sets are equal. This equality means that only the accuracy
parameter can be used to represent the other parameters. Fig.
6 uses the accuracy parameter to compare the five models
across the four datasets.

Figure 6: Model Accuracy across test sets: Basic CNN Com-
bined trained with 50% non-watermarked image, 25% 4-bit
watermarked image and 25% 1-bit watermarked image has the
best performance across all test sets.

In Fig. 6, we applied different test sets to the five models
(having different architectures and/or train sets). The test sets
are: 4-bit per block watermarked images, 1-bit per block wa-
termarked images, original (0-bit) images, and a proportional
combination of all the other three data sets. For all the test
sets, the Basic CNN Combined has the highest accuracy. This
model outperformed any of the models trained with either the
original or the watermarked images only. It also outperformed
all other models in both original and watermarked image test
sets.

Fig. 7(a) is a summary of the best model trained with
baseline dataset. The baseline dataset is the dataset without
any watermark added and without mixture of watermarked and
non-watermarked images. The Basic CNN performed better
than MobileNetV2 in all cases.

Machine learning model trained with unwatermarked dataset
is the currently accepted method of training medical image
classification models. Hence, Fig. 7(b) shows the performance
of an original Basic CNN model across the four datasets.

Fig. 7(b) shows that Basic CNN Model trained with original
Dataset performed best on a test set that contains a mixture
of data from non-watermarked and differently watermarked
images. The second best performance is with 1-bit test data
followed by 4-bit test data. The least performance is from non-
watermarked test set. This is counter-intuitive with the popular
belief that watermarking reduces machine learning accuracy
for medical images.

Fig. 8 shows that a model trained with both original and
watermarked images will perform slightly better on all test
sets than the model trained with original dataset only.

IV. DISCUSSION

In this research paper, we examined the impact of a spread
spectrum steganographic algorithm called C4S algorithm on
the performance of deep learning classification models. The
aim of this study is to further evaluate the suitability of
C4S algorithm for medical image security in digital Health
applications. We have chosen basic CNN and MobileNetV2
deep learning models as they are benchmark models for
desktop and mobile machine learning applications respectively.
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(a) Embedding capacity vs Accuracy (b) Performance for Individual and Mixed Test sets

Figure 7: Basic CNN trained with original dataset but tested across watermarked, non-watermarked and mixed datasets

Figure 8: Basic CNN trained with original data set performed
better with test images that contains watermarked images

The accuracy and robustness of a machine learning method
depends on the method, architecture, training dataset and
training hyperparameters. In some cases, pre-processing of
the data is introduced to also increase the chance of better
performance. In this work, we have applied deep learning
method, basic and Mobilenetv2 CNN architectures, malaria
blood smear dataset and consistent hyperparameters across
all experiments. No image pre-processing or hyperparameter
tuning were performed to ensure that variations in performance
are only due to steganography (for each deep learning method)
and not any other image processing algorithms.

In comparison with traditional machine learning methods
such as the support vector machine (SVM), deep learning
methods are more robust to steganography. In previous works
in [9], [13] where SVM was used to evaluate the C4S algo-
rithm, the classification decreased from 86.14% before the ad-
dition of watermark to 82.18% after the addition of watermark.
Recall increased from 82.18% to 85.15%. However, in the
case of deep learning, both accuracy and recall increased from
94.5% to 97.65% before and after watermarking, respectively.
The overall explanation for higher performance with deep
learning is that it can extract more differentiating features

between classes than a traditional machine learning methods.
Secondly, the increase in performance after watermarking
implies that the C4S acts like a pre-processing algorithm that
helps to better differentiate a healthy image from a malaria
image. Not all steganographic methods will have this positive
effect on deep learning algorithms.

Going further, the results in this work demonstrated that
models trained with original non-watermarked data can even
perform well or better with watermarked image. For the Basic
CNN model trained with original dataset, the accuracy on 1-bit
watermarked test set was 97.19% as opposed to an accuracy
of 94.36% on an original non-watermarked test. Even for
the 4-bit watermarked test, the accuracy reduced to 94.49%,
which is still higher than 94.36% with an original test set.
Hence, the challenge lies in finding the optimal embedding
capacity that will just improve deep learning algorithms rather
than degrading it. Figure 7(a) shows that at some embedding
capacity greater than 5.5bits per block, the accuracy of the
deep learning algorithm may become worse than that of non-
watermarked test set. The design process for digital health that
involves steganographic information security should include
a method of finding this optimal embedding capacity. A
framework that helps to achieve this goal was introduced in
The framework presented in [19].

There has been numerous assertions that watermarking
and steganography would alter the fine-grained features in
medical images and reduce the ability of medical personnel
to detect biomarkers or symptoms that indicates a sickness
[18]. This research shows that such a blanket statement is not
the case. Instead medical experts should treat each medical
image information hiding algorithm just as a drug discovery
process. Algorithms should be taken through "clinical" trials
to find out their impact on diagnostic accuracy. Apart from
using machine learning evaluation like this work, medical
doctors should verify that secret watermarks do not change
how humans and other medical equipment read and interpret
medical images. Generally, medical image alterations are not
recommended, however, we recognize that machine learning
algorithms are applicable to pre-processing medical images
before diagnosis occurs. The results of this study indicate
that steganography and watermarking could be part of signal
processing with the extra advantage of its security features
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wherever they are applicable.

V. CONCLUSIONS

It is a false generalisation to assume that watermarking
and steganography reduces the accuracy of machine learning
algorithms for medical image classification. However, similar
evaluation should be performed for different data-sets to
determine their applicability. Furthermore, deep learning archi-
tectures also should be experimented on how they are robust
to steganography and watermarking. The framework presented
in [19] is an attempt to quickly evaluated a dataset on several
steganographic algorithms and deep learning algorithms in
order to select the best combination of algorithms for a given
medical image application. It is recommended that one follows
similar framework while designing a medical image security
application over an open network and where machine learning
algorithms will be run on the transmitted medical image that
contains a watermark.

In future works, we intend to evaluate more datasets, more
steganographic algorithms and more deep learning architec-
tures. Also, an online evaluation platform will be created to
enable developers to easily evaluate their dataset, data hiding
algorithms against selected deep learning algorithms before
integrating them into an application for digital health delivery.
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