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Abstract—In this paper, we propose a novel framework that
extracts rotation-invariant features relative to the centroid and
the reference point in a local point set. Furthermore, we search
different scales of nearest neighbors simultaneously to acquire
more rotation-invariant information around certain specific point
cloud data. We evaluate our architecture with two point cloud
tasks, object classification and part segmentation. Experiment
results show that our method generates consistent results on
randomly rotated data and achieves state-of-the-art performance
without any rotational data augmentation. For classification,
when training and testing with arbitrary rotations, our model
is able to reach averagely 89.0% and 73.5% accuracy on the
ModelNet40 and ScanObjectNN datasets, respectively. On the
ShapeNet dataset, which is a part segmentation task, our model
can achieve 77.7% mIOU.

Index Terms—Point Cloud, Classification, Segmentation,
Rotation-Invariant, Geometric-Feature Descriptor

I. INTRODUCTION

In recent years, deep learning methods for 3D data pro-
cessing have brought about significant progress in object
classification and object segmentation. Research in this area is
increasing with more and more demands for consumer devices
such as indoor navigation, autonomous driving, and virtual
reality. It is worthwhile to mention that, unlike 2D images,
3D data can be depicted in different ways. For instance, 3D
data can be represented as polygonal meshes, point clouds,
volumetric grids, and depth images. Therefore, the approaches
to handle different formats are also distinct.

Among many methods for processing 3D data, point cloud,
a set containing displacement of points in 2D or 3D space,
is a convenient data format to represent the shape of objects.
The data format not only gets rid of uninformative 3D features
but is also easy to process and observe. Each point in a point
cloud is described by x, y, and z coordinates in 3D space.
Previous studies have improved the learning of local features
in a point cloud by introducing various convolution operators
and demonstrate good performances. However, when it comes
to rotation, the performances of some models are likely to
degrade. Though some may make use of rotation augmentation
to make their models more robust for rotated data, they are
still not guaranteed to be rotation-invariant.

To resolve this issue, we propose a method to extract
rotation-invariant features for point clouds instead of merely
taking 3D coordinates as the input. We also search differ-
ent scales of nearest neighbors when the features propagate

Fig. 1. Our proposed 3D Geometric-Feature Descriptor. Combined with Eq.
1, we take the origin o into consideration, and extend the features to reinforce
the rotation-invariance.

through the model. In that way, our method can be rotation-
invariant on processing point cloud objects.

II. RELATED WORK

Multi-view and volumetric networks. To reuse the convo-
lutional models that are widely explored in computer vision,
some researchers proposed to project point cloud data onto
grid-based 2D or 3D space. Su et al. [1] projected 3D data
onto 2D images from different views. In that way, they could
combine the data with some well-known architectures which
have good performances on 2D image tasks. Wu et al. [2]
represented geometric shapes as a probability distribution on
a 3D voxel grid, and used binary tensor to represent whether
the voxel is inside the mesh surface. Similarly, Maturana et
al. [3] partitioned 3D space into many small grids, over which
3D convolutional neural networks can be applied.

Point-based deep learning methods. Despite the fact that it
is convenient to apply 2D deep learning models on projection-
based methods mentioned above, we may lose some informa-
tion when projecting onto lower dimensions. Moreover, due
to the sparsity of point cloud data, the above methods often
cost much memory and thus inefficient. Qi et al. [4] advocated
representing 3D data as points lying in 3-dimensional spaces
depicting the outline of an object structure. They took coor-
dinates of these points as input data, used several multi-layer
perceptrons (MLPs) to aggregate the coordinate information
as global features, and then applied symmetric functions, such
as max-pooling, to distinguish the shape of the object. Notice
that the authors also took the normal vectors of points as extra
information for better results.
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Local features learning. After PointNet [4] was pro-
posed, more and more models focused on learning point-
based information on 3D space because of its convenience
as well as fewer resources required. [5], [6], [7], [8] not
only learned the coordinates in 3D space but also learned the
relation between points and points. Qi et al. [5] improved the
performance of [4] by means of grouping different ranges and
amounts of points so as to learn the local information between
these points. They also took the relation between points and
points to learn more information. Wang et al. [6] proposed
a representation regarding graph-based methods to evaluate
the strength of a point-based model, and extract local features
by subtracting neighbors from local reference points. Li et
al. [7] proposed χ-conv layers that can learn a χ-transform
matrix to achieve permutation invariance, and then combined
the layers with traditional convolutional layers. Zhang et al.
[9] introduced ShellConv operator to group local neighbors
abiding by the Euclidean distance from each reference point,
and took difference number of nearest neighbors at different
stages to make the model learn additional information.

Rotational invariant feature extraction. Although mis-
cellaneous 3D deep learning models and learning methods
were proposed, the robustness to arbitrary rotations is still a
challenging task on point cloud data. PointNet [4] tried to
deal with this problem by learning a T-net matrix to make
their model less vulnerable to random rotations. LaLonde et al.
[10] utilized on hierarchical clustering and extracted features
invariant to rotation directly. Zhang et al. [11] calculated
centroid of local points and took rotation-invariant features
for learning to achieve rotation-invariance property.

Inspired by [11], our work aims to propose a rotation-
invariant point cloud architecture that is robust to arbitrary
rotations. We also show that our work is still competitive on
real-world classification tasks, which include the background
in the point cloud data.

III. METHODS

In this section, we introduce our overall flow. We follow
the approach to extract rotation-invariant features proposed
by [11] at first. Then we combine these features with our
newly proposed rotation-invariant features to formulate our 3D
Geometric-Feature Descriptor. Subsequently, we introduce the
proposed multi-kNN graph, which makes our learning process
more robust. We combine 3D Geometric-Feature Descriptor
and multi-kNN graph to formulate our proposed model. At the
last of this section, we detail the architecture of our proposed
neural network.

A. 3D Geometric-Feature Descriptor

Given a local reference point p, Zhang et al. [11] used k-
nearest neighbors (k-NN) algorithm to find k points closest
to p, and formed a local point set. We denote the point set
as Xp = {xi, i = 1, ..., k}. After k nearest points are found,
we can easily find the centroid, m, of the point set. Then [11]
used the relationship among the reference point p, the centroid

Fig. 2. Rotational invariant features extraction proposed in [11]. Here, d0 is
pxi, d1 is mxi, α0 is ∠mpxi, and α1 is ∠pmxi mentioned in Eq. 1.

point m, and each local point xi, to construct rotation-invariant
features. The visualized relation is shown in Fig. 2.

The three points mentioned above constitute a triangle.
The pxi, mxi, ∠mpxi and ∠pmxi are the selected rotation-
invariant features. The feature extraction can be represented
as:

RIF (xi;
−→pm) = [pxi,mxi,∠mpxi,∠pmxi]. (1)

Note that the angles are represented as cosine values due to
the convenience in calculations.

The method to extract local features indeed has outstanding
results experimented on rotated point clouds. However, this
way to depict relationships of a local point set in Euclidean
space neglects the relations between these triangles formed
by different nearest points xi ∈ Xp and −→pm. That is to say,
these triangles with different vertex xi may lie in different
planes in 3D space. We will lose the information of the angles
between the planes containing different triangles. To deal with
the problem, we propose 3D Geometric-Feature Descriptor,
which combines features used in Eq. 1 with global information
to help describe the geometric features.

Except that distances and angles of the points in one local
point set are rotation-invariant, the displacement of origin o
is also unchanged through rotation. As a result, we take the
relations between the origin o and one local point set into
consideration. Our descriptor is defined as:

f(p, xi,m) = [RIF (xi;
−→pm), d(P, xi), γ, β0, β1]. (2)

Here, P is the specific plane containing m, p and the origin
o. d(P, xi) is the distance between xi and plane P , and γ is
the angle between the normal vector of P and −→oxi. β0 and β1
denote ∠poxi and ∠opxi, respectively. The angles here are
also represented as cosine values.

In this way, the calibration of the origin becomes more
crucial. Therefore, we shift the whole point cloud consistently
and take the centroid of the whole point cloud as the origin.
To make it more clear, we visualize our feature descriptor in
Fig. 1.

To learn the relations between different neighboring points,
consider a plane P formed by three points o,m, p. (WLOG,
these three points do not lie in a line.) The first two extra
features, d(P, xi) and γ, are the distance between the nearest
point xi and plane P , and the angle between −→oxi and the
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Fig. 3. Overall architecture of our neural networks. We perform farthest point sampling (FPS) to search different neighboring points in every module of the
classification task, and follow [12] to build an encoding-decoding architecture for the segmentation task. For simplicity, we set the number of k-NN graphs
NK to 1 in this example.

normal vector of the plane. On account of the plane, P ,
is formulated by o,m, p, we can extract the stereoscopic
information from these neighboring points. The latter two
features, ∠poxi and ∠opxi, give the information among the
origin o, the local reference point p, and the nearest point xi.
Since the displacement of the centroid has the risk of being
affected by the perturbation of these nearest points and the
outlier if the number of neighbors is insufficient, adding these
two features improves our learning robustness.

Through MLPs (multi-layer perceptrons), we can then em-
bed these geometric features into higher dimensional feature
spaces.

B. Multi-kNN Graph

Through the whole module, several top-of-the-notch models
take the k-NN algorithm to acquire the information between
the neighbors and the reference point. These models usually
apply max-pooling layers to acquire the features with the
highest response. Inspired by the architecture of [13] and
multi-scale grouping mentioned in PointNet++ [5], we take
different numbers of hyperparameter k at the same time.
Details are illustrated in Fig. 4.

Using the property that the centroid will change if we take
different numbers of neighbors in a point set, we search three
k-NN graphs with different k values instead of only one scale
k-NN graph. In this way, for each reference point p, we are
capable of acquiring different information according to the
distribution with different numbers of the neighbors.

C. Architecture

We formulate the 3D Geometric-Feature Descriptor, multi-
kNN graph, multi-layer perceptrons, aggregation function, and
grouping operation as a module called 3D Geometric-Feature

Fig. 4. Visualization of processing multi-kNN graphs with different scales
of k.

Extractor (abbreviated as 3D-GFE). To effectively emphasize
the features in Euclidean space, we adopt the architecture as
that in ShellConv [9]. Our model is shown in Fig. 3, and each
row represents a complete 3D-GFE module.

The model at the encoding stage is composed of three 3D-
GFE modules. The step in each module can be formulated
as:

F (p) =M([A(d1(p)), A(d2(p)), ..., A(dNK
(p))]); (3)

di(p) = G(Mi(f(p, x,mi)), Fprev(x)). (4)

Here, F (p) is the output feature of local reference point p
from this module, and Fprev(·) is the output feature obtained
from the previous module. f(·) is our proposed 3D-GFD
mentioned in Eq. 2. Nk is the number of k-NN graphs. mi

is defined by different scale of k, i.e. mi 6= mj if i 6= j.
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TABLE I
CLASSIFICATION ACCURACY (%) ON THE MODELNET40 DATASET [14]
COMPARED WITH OTHER POINT-BASED MODELS. ALL THE NUMBER OF

ORIGINAL SAMPLING POINTS ARE 1,024.

Methods z/z SO(3)/SO(3) z/SO(3)
PointNet [4]* 89.2 75.5 16.4
PointNet++ [5]*# 91.9 77.4 18.4
PointCNN [7]** 91.3 84.5 41.2
DGCNN [6]* 92.2 81.1 20.6
ClusterNet [10] 87.1 87.1 87.1
SRINet [15] 87.0 87.0 87.0
RIConv [11] 86.5 86.4 86.4
LGR-Net [16]# 90.9 91.1 90.9
Ours 88.6 89.0 89.4

*: reported by [10] **: reported by [11]
#: require both point cloud and normal inputs

M(·) implies that the features are through MLPs (multi-layer
perceptrons) with trainable weights. Every MLP is followed
by a batch normalization layer and leaky ReLU activation
function to achieve a better effect of learning. Notice that all
the f functions with the same p and i are using the same
MLP Mi. A is the aggregation layer. It is also a symmetric
function to aggregate information from the nearest points with
regard to p. Here, we take maximal and average values among
the neighbors simultaneously as the aggregation function.
We found that the model generates better results if we use
both average-pooled and max-pooled features instead of using
max-pooled features only. G is the grouping layer used to
concatenate Fprev(·).

In the classification task, through the whole neural networks,
we perform farthest point sampling (FPS) to reduce the burden
of memory usage, and take the down-sampled points as input
points to acquire different geometric features in every module.
In segmentation tasks, we follow U-net [12] and design an
encoder-decoder architecture with skip connections. At the
decoding stage, starting from the number of points at the
end of the encoder stage, our decoder uses 3D Geometric-
Feature Extractors to output denser points and fewer channels
until the number of outputs recovers to the original number of
points. Skip connections are performed at the first two layers
of the decoding stage to concatenate the output features from
the encoding layers. Moreover, multi-kNN graphs are also
implemented in the decoding stage.

IV. EXPERIMENTS

This section provides the implementation and training de-
tails according to different learning tasks: synthetic object
classification, real-world object classification, and part seg-
mentation. We also make a comparison with other existing
state-of-the-art methods.

A. Parameter Setting

In our design, our neural network used for the classification
task has three encoding layers. Except for encoding raw Eu-
clidean features, each layer also utilizes the features obtained
by the previous layer to train together with geometric features.
We combine the model with another three decoding layers in
the segmentation task.

TABLE II
CLASSIFICATION ACCURACY (%) ON THE TASK (PB T50 RS) IN THE

SCANOBJECTNN DATASET [17].

PB T50 RS
Method z/z SO(3)/SO(3) z/SO(3)
PointNet [4]* 68.2 42.2 17.1
PointNet++ [5]*# 77.9 60.1 15.8
PointCNN [7]* 78.5 51.8 14.9
DGCNN [6]* 78.1 63.4 16.1
RICONV [11]* 67.9 68.3 67.9
LGR-Net [16]# 72.7 72.9 72.7
Ours 73.5 73.5 72.7

*: reported by [16]
#: require both point cloud and normal inputs

TABLE III
OBJECT PART SEGMENTATION RESULT ON THE SHAPENET PART DATASET

[2]. THE METRIC IS MEAN PER-CLASS IOU (%).

SO(3)/SO(3) z/SO(3)
PointNet [4]* 74.4 37.8
PointNet++ [5]*# 76.7 48.3
PointCNN [7]* 71.4 34.7
DGCNN [6]* 73.3 37.4
RICONV [11] 75.3 75.3
LGR-Net [16]# 80.1 80.0
Ours 77.7 78.2

*: reported by [11]
#: require both point cloud and normal inputs

Our network is implemented in Pytorch, executed on a
computer with Intel (R) Core (TM) i7-7700 CPU with 64 GB
RAM, and run on two NVIDIA GeForce GTX 1080 Ti GPUs.

B. ModelNet40

The synthetic object classification task is trained on the
ModelNet40 dataset [14], which is a widely used benchmark
for point cloud analysis. The ModelNet40 dataset [14] includes
12,311 meshed CAD models categorized in 40 objects. The
data is split into two parts, 9,843 models are used for training,
and 2,468 models are used for testing. The point cloud data are
uniformly sampled from the mesh face of these CAD models
and re-scaled into a unit sphere. For a fair comparison, we
only use 1,024 points from each data, and each point only
contains the information of (x, y, z) coordinates. In addition,
we conduct 5-fold cross-validation in the training data for
steady performance. We save the model with the highest
accuracy on the validation set in these five folds, and then
use the model for testing.

Table I shows our results compared to state-of-the-art work.
We perform experiments in three cases: training and testing
data with only rotated along the z-axis (z/z), training and test-
ing data with arbitrary rotations (SO(3)/SO(3)), and training
with only rotated along the z-axis and testing with arbitrary
rotations (z/SO(3)). As the results show, our proposed method
generates the best results in the SO(3)/SO(3) and z/SO(3)
cases even though we conducted extra cross-validation on
the training set, which reduces the available training data.
Moreover, among these cases, our method almost generates
the same result, implying rotation-invariance.
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C. ScanObjectNN

The real-world object classification task is trained on the
ScanObjectNN dataset [17]. The ScanObjectNN dataset [17]
contains approximately 15,000 objects that are categorized into
15 categories with 2,902 unique object instances. Additionally,
part of the data are processed through random perturbation,
scaling, and rotation, making it more challenging. Like what
we have done on the ModelNet40 dataset, we conduct 5-fold
cross-validation on the training data for a fair comparison.

We present Table II with the results conducted on the
challenging task (PB T50 RS) provided in [17]. We compare
our results with those high-quality models, which also merely
take coordinates as input features. Except for the augmented
testing data provided in [17], we also show the result in three
cases: z/z, SO(3)/SO(3), and z/SO(3). Among these cases, our
model achieves the highest accuracy in the second and the
third cases among models.

D. 3D Object Part Segmentation

Part segmentation task is to segment an object into many
parts. We experiment on the ShapeNet part dataset [2], which
contains 16,881 shapes from 16 object categories, annotated
with 50 parts in total. There are 2,048 points sampled from
each object, annotated with no more than six parts. We follow
[2] and split the dataset into 14,006 training models along with
2,874 testing models.

We calculate the mean Intersection-over-Union (mIOU) on
points to compare with other models. The result is shown in
Table III. Similarly, the models that extract rotation-invariant
features have better performances, and our model outperforms
all other methods.

V. CONCLUSION

In this paper, we propose a novel rotation-invariant feature
extractor to deal with 3D point cloud data with arbitrary
rotations. We use distances, angles, and planes formulated by
specific points to construct the stereotactic feature descriptor.
Combined with multi-kNN that simultaneously takes different
numbers of neighbors as the targets, our method is more robust
to jittered point cloud data. Extensive experiments on well-
known 3D benchmarks demonstrate that our proposed features
and multi-kNN graph architecture improve the performance.
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