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Abstract—Due to the irregular and unordered properties of
3D point cloud data, it is more challenging to extract geometric
features between points. In this paper, we propose techniques
to improve the ability of capturing point cloud features, so that
higher accuracy and better stability of point cloud classification
tasks can be achieved. First, we design two attention modules: the
Point-wise Attention Module determines the correlation between
points, and the Channel-wise Attention Module allows the model
to focus on important features with limited resources. With
these attention modules, we not only achieve the state-of-the-art
accuracy of 93.7% on the ModelNet40 dataset but also reduce the
error rates on the ScanObjectNN dataset. Secondly, we propose
a guideline to dynamically adjust the size of the KNN. Using
the proposed Dynamic-K method, we can significantly increase
the accuracy of classification when dealing with low-resolution
objects.

Index Terms—3D Point Cloud Classification, Attention Mech-
anism, Deep Neural Network

I. INTRODUCTION

In recent years, demands in automated driving technology
make a rapid growth of 3D point cloud research. 3D point
cloud data have the following properties that make them
difficult to process:

1) Unorderedness: 3D point cloud data are simply a col-
lection of points without particular order. An object
consisting of N points has N ! possible representations.
Therefore, the classifier must be invariant to the order,
or it may cause different results for the same object in
different descriptive orders.

2) Irregularity: 3D point cloud data are arranged irregularly.
Each point in a point cloud object is not confined to a
fixed grid location, so the relative positions and distances
between points are nonuniform. This leads to the failure
of most traditional methods applied to 2D images, such
as convolution operations and sliding windows.

3) Sparsity: In robotics and autopilot scenarios, a LiDAR
sensor scans the surrounding scene with scan lines. Its
coverage of sampling points can be very sparse relative
to the scale of the scene, which makes it impossible to
extract features efficiently after converting point cloud
to a standard grid.

To overcome issues caused by these properties of point
cloud data, several approaches have been proposed, such as
PointNet [1], PointNet++ [2], DGCNN [3], SpiderCNN [4],
and RS-CNN [5]. In this paper, we propose techniques to

improve the results of the object classification task on point
cloud data, and we summarize our contributions as follows:

• We significantly improve the ability to capture 3D point
cloud geometry features by the Point-wise Attention
Module (PAM) and the Channel-wise Attention Module
(CAM). Using these two attention mechanisms, we can
obtain state-of-the-art results on both ModelNet40 [6] and
ScanObjectNN [7] datasets.

• We propose the Dynamic-K method, which significantly
improves the robustness of the KNN-based classification
when facing low-resolution objects.

II. RELATED WORKS

Volumetric Methods: Due to the excellent feature cap-
turing ability of convolutional operations on standard grids,
it is intuitive to convert irregular and unordered data types
(i.e. point clouds) into standard volumetric grids. Through the
conversion, 3D convolution can be directly applied to point
cloud data. Well-known methods such as 3D ShapeNets [6]
and VoxNet [8] fall into this category.

However, volumetric methods have two drawbacks: high
memory consumption and high computational complexity.
These disadvantages limit the volumetric methods to be only
suitable for low-resolution input data. As a result, Wang et al.
proposed O-CNN [9], which first divides a space into eight
quadrants and stores the information of whether there is a point
in these eight quadrants. If the eight quadrants are all empty,
the octree will not have any child nodes. Otherwise, it goes
into a quadrant and repeats the above process. By doing so, it
can save a lot of memory space. This allows the O-CNN [9]
to construct a deeper neural network and further increase the
input resolution. While these methods are effective in resolving
the problem of irregular alignments and unorderness, they are
still not as powerful as those methods that work directly with
point cloud data.

Direct Processing of Point Cloud Objects: The first study
that directly deals with point cloud data is PointNet [1], which
uses symmetric operations and shared Multi-Layer Perceptron
(MLP) to handle the unordered and irregular properties of
point cloud data. In order to improve the stability of the
model for various transformations, PointNet also introduced
a framework called T-Net. The goal of T-Net is to simulate
various affine transformations in the training process to make
the model more robust.
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Fig. 1: The proposed network architecture: It takes an object with N points as the inputs and calculates the edge features by
Attention EdgeConv. After four layers of Attention EdgeConv, our network aggregates all of the features to obtain the global
features. In the last step, our network generates classification scores for M classes by fully connected layers.
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Fig. 2: Comparison between the EdgeConv and our proposed
Attention EdgeConv.

Although PointNet performs well, it has certain drawbacks.
The most obvious one is that it only captures global features
and does not take the correlation between points into account.
This limits its ability in capturing local features. Later many
studies have aimed to improve the problem of lacking local
messages in PointNet. PointNet++ [2] constructs a hierarchical
neural network to extract features recursively via the designed
sampling and grouping layers. Wang et al. proposed a method
named DGCNN [3], which constructs KNN Graphs in each
layer to capture the correlation between points in different
feature dimensions. Liu et al. proposed RS-CNN [5], which
randomly selects the neighbors within a certain radius in order
to make the model more robust to non-uniformly sampled
objects.

Inspired by the above-mentioned studies, in the following
sections, we introduce new schemes to further improve the
results of point cloud classification tasks.

III. THE PROPOSED DESIGN

The proposed network architecture is shown in Fig. 1.
The details of our design are discussed in the following
subsections.

A. Attention EdgeConv

EdgeConv, proposed by [3], is an effective method for
capturing local information. When calculating features of one
particular point, EdgeConv takes the information of that point
and its K nearest points. With this technique, the points can
form a small local graph within a small area, providing local
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Fig. 3: Attention Module: each Attention Module consists
a Point-wise Attention Module (PAM) and a Channel-wise
Attention Module (CAM).
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Fig. 4: Point-wise Attention Module (PAM)

features. The experiments have shown that combining global
and local features to update the features of each point is
effective.

However, the last operation in EdgeConv is Max Pooling,
which does not well preserve the features of the edges. In
response to this observation, we propose two attention modules
to replace the Max Pooling. The two attention modules,
a Point-wise Attention Module (PAM) and a Channel-wise
Attention Module (CAM), can enhance the ability of Edge-
Conv in capturing geometric features. The PAM aims to edge
weights while the CAM focuses on distinctive features under
limited computing resources. The architecture of Attention
EdgeConv and the design of Attention Module are shown in
Fig. 2 and Fig. 3, respectively.

1) Point-wise Attention Module (PAM): The Max Pooling
operation in EdgeConv aims to extract the features of an
edge with the largest correlation regarding the center point.
However, this causes the loss of feature information for the
remaining K − 1 edges. Therefore, we have the model learn
a set of weights for each edge so that all edges can provide
the local information.

To learn the weights of the edges, we design a spatial
attention mechanism for point cloud objects, named Point-wise
Attention Module (PAM), as shown in Fig. 4.

Our proposed PAM first uses a shared MLP fθ to obtain
a set of weights. Then we use Instance Normalization and
Sigmoid modules in series, expressed as σ+ here, to make
the model more efficient and stable. After that, we apply an
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TABLE I: Classification results on ModelNet40 [6] dataset: +norm denotes data with normal vectors; +voting denotes post-
processing with multi-votes is applied.

Architecture Input Type # Points Avg Class Acc Overall Acc Params

PointNet [1] xyz 1k 86.0% 89.2% 3.5M
Kd-Net [10] xyz 1k - 90.6% -
PointCNN [11] xyz 1k 88.1% 92.2% 0.6M
PCNN [12] xyz 1k - 92.3% 8.2M
DensePoint [13] xyz 1k - 92.8% -
DensePoint [13] + voting xyz 1k - 93.2% -
DGCNN [3] xyz 1k 90.2% 92.9% 1.84M
KPConv [14] xyz 1k - 92.9% 14.3M
RSCNN [5] xyz 1k - 92.9% 1.41M
RSCNN [5] + voting xyz 1k - 93.6% 1.41M

Ours xyz 1k 91.1% 93.7% 1.95M

SO-Net [15] xyz 2k 87.3% 90.9% -
PointNet++ [2] xyz + norm 5k - 91.9% 1.48M
SpiderCNN [4] xyz + norm 5k - 92.4% -
SO-Net [15] xyz + norm 5k 90.8% 93.4% -
DGCNN [3] xyz 2k 90.7% 93.5% 1.84M
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Fig. 5: Channel-wise Attention Module (CAM)

exponential function to the weights to ensure that non-negative
values can be attained. Input edge features e′ij for the point
i are multiplied with these weights Wij and then normalized
to produce the weighted features x′i. The equation is shown
below:

x′i =

∑K
j=1Wij × e′ij∑K

j=1Wij

, (1)

where
Wij = F

(
e′ij
)
= exp

(
σ+

(
fθ
(
e′ij
)))

. (2)

2) Channel-wise Attention Module (CAM): In addition to
the PAM that helps us determine the weight of each edge, we
adopt the Squeeze-and-Excitation technique, a channel-wise
attention mechanism proposed by [16], to extract more features
without adding too many resources. The CAM is shown in Fig.
5, which can be split into two main parts.

First is the Squeeze part, where we take an average of
the information from all points. This is to make use of the
correlations between channels rather than correlations in the
spatial distribution. This can also block out the information
spatially distributed, making the model more reliable in terms
of scale.

The Excitation part is implemented with two fully connected
layers. The first fully connected layer fφ with ReLU function
compresses the total F ′ channels into F ′/r channels to reduce
the amount of computation. The second fully connected layer

gφ reverts the F ′/r channels back to the F ′ channels, and
then uses the Sigmoid function σ to limit the output weights
ranging from 0 to 1. Here, r is the reduction ratio.

s = σ (gΦ (ReLU (fφ (x
′
i)))) . (3)

The final output yi of the PAM is obtained by rescaling the
input x′i with the scalar s:

yi = s · x′i. (4)

B. The Dynamic-K Method

In order to obtain local geometric information, KNN is
usually adopted to construct a local receptive field [3], [11],
[15]. However, this receptive field varies not only with the
k value in KNN but also with the number of input points.
Previous methods selected the KNN size during the training
stage and fix the size for evaluation. As the result, when
dealing with low-resolution objects, this scheme may cause
a significant change in the receptive field as shown in Fig. 6.
Thus a notable decrease in classification accuracy [17] would
be observed.

To overcome the above issue, we propose the Dynamic-K
method, which allows the model to select the size of KNN
during the evaluation stage following the equation below:

Ktest = (Ktrain −Bias)×
Ntest
Ntrain

+Bias, (5)

where Ntrain and Ntest are the numbers of input points in
the training and testing stages, while Ktrain and Ktest are
the sizes of the KNN models. As for Bias, it is used for
setting the smallest size of the KNN. In our experiment, we
set Ktrain to 20, Ntrain to 1024 and Bias to 5. After applying
the Dynamic-K method, we can keep the receptive field almost
unchanged for low-resolution objects. Qualitative experimental
results are shown in Section IV-E.
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TABLE II: Classification results on ScanObjectNN [7] dataset. * : reported by [7].

OBJ ONLY OBJ BG PB T25 PB T25R PB T50R PB T50 RS

3DmFV [18]* 73.8% 68.2% 67.1% 67.4% 63.5% 63.0%
PointNet [1]* 79.2% 73.3% 73.5% 72.7% 68.2% 68.2%
SpiderCNN [4]* 79.5% 77.1% 78.1% 77.7% 73.8% 73.7%
PointNet++ [2]* 84.3% 82.3% 82.7% 81.4% 79.1% 77.9%
DGCNN [3]* 86.2% 82.8% 83.3% 81.5% 80.0% 78.1%
PointCNN [11]* 85.5% 86.1% 83.6% 82.5% 78.5% 78.5%

Ours 84.2% 83.6% 83.8% 82.7% 81.0% 79.7%

Fig. 6: An example of the Dynamic-K method. During the
training process, the size of KNN is 8, the number of points
is 32. If a lower- resolution object with 16 points is tested
during evaluation, the receptive field would be inconsistent
with one in the training phase. After applying the proposed
Dynamic-K method, the receptive field will be controlled to a
similar size as in the training phase.

C. Our Network Architecture

As shown in Fig. 1, we stack the neural network in the same
way as DGCNN [3] to verify the effectiveness of the attention
module. We use four Attention EdgeConv layers with channel
sizes of 64, 64, 128, and 256 to capture the geometry features.
We also use the same Dynamic Graph method as DGCNN.
For each Attention EdgeConv layer, we reconstruct a new
KNN Graph based on the current features to capture geometric
relationships in different feature dimensions. In the training
phase, we fix the size of KNN to 20. In addition, shortcut
connections are included to extract multi-scale features, and
the following shared MLP layer aggregates these features.
Next, we use both Max Pooling and Average Pooling to obtain
global features. Finally, we use three fully connected layers
with 50% dropout as the classifier, where LeakyReLU and
Batch Normalization [19] are used in each layer.

IV. EXPERIMENTS

A. Training Details

We implement our network in Pytorch and perform 250
epochs training with batch size set to 32. To optimize the
model weights, we use SGD with the initial learning rate
of 0.1, momentum of 0.9, and weight decay of 0.0001. The
learning rate is reduced to 0.001 using the strategy of Cosine
Annealing [20], and our network is trained on two RTX2080Ti
GPUs with 64 GB of DDR4 memory.

B. The ModelNet40 Result

We summarize the ModelNet40 results in Table I. Our
architecture outperforms all xyz-input architectures on the

ModelNet40 dataset. In addition, our method even outperforms
SO-Net [15], which uses rich information such as 5K inputs
with normal vectors. We also achieve higher scores compared
to RS-CNN [5], which uses the post-processing of 10-vote
evaluations that is repeated 300 times during testing.

C. The ScanObjectNN Result

We summarize the ScanObjectNN result in Table II. In
OBJ ONLY and OBJ BG, due to the small amount of data
(only 2,902), our method suffers from the overfitting issue,
which results in worse performance. However, in PB T25,
PB T25 R, PB T50 R, and PB T50 RS, we achieved 83.8%,
82.7%, 81.0%, and 79.7% of accuracy, respectively, which
outperformed all previous methods. This proves that our
proposed method can perform well in synthetic datasets and
real-world objects with various perturbations.

D. Ablation Study

We remove each part of the attention module and observe
the effect on the classification results on ModelNet40 [6]
dataset. The experiment results are shown in the Table III.
According to the result, the combination of the PAM and the
CAM produces the best performance. It should be noted that
once all the PAM and CAM designs are removed, the proposed
model will become DGCNN [3].

TABLE III: Effect of different parts of the attention module.

Params Overall Acc

DGCNN 1.84M 92.9%
PAM 1.90M 93.2%
CAM 1.85M 93.3%
PAM + CAM 1.95M 93.7%

E. Robustness Test

We test the robustness of our architecture on ModelNet40
[6] dataset. We use low-resolution objects as inputs to our
model, which is trained with complete objects (1024 points).
For a fair comparison, random sampling is applied to the input
data. We summarize the results in Fig. 7. As demonstrated, our
architecture outperformes DGCNN at all kinds of resolutions
even without the use of the Dynamic-K method. After applying
the Dynamic-K method, the accuracy numbers are further
improved. The results demonstrate the effectiveness of the
Dynamic-K method.
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Fig. 7: Robustness test of our architecture on various number
of input points. The model is trained with 1024 points and
tested with random input subsampling.

V. CONCLUSION

In this work, we propose two different types of attention
modules and the Dynamic-K method. The Point-wise Atten-
tion Module helps the model capture more accurate geometric
features, while the Channel-wise Attention Module helps the
model retain important features with limited resources. The
Dynamic-K method allows our model to maintain the receptive
field and therefore good performance even for low-resolution
point cloud objects. Combining the two attention modules and
the Dynamic-K method facilitates our model to surpass the
state-of-the-art results.
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