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Abstract—Deep reinforcement learning has been successfully
developed for many challenging applications. However, collecting
new data in actual environment requires a lot of costs which make
the agent to learn slowly for high-dimensional states and actions.
It is crucial to enhance the sample efficiency and learn with
long-term planning. To tackle these issues, this study presents a
stochastic agent driven by a new model-based soft actor-critic
(MSAC). The dynamics of the environment as well as the reward
function are represented by a learnable world model which
allows the agent to explore latent representation of environment
which conducts stochastic prediction and foresight planning. An
off-policy method is proposed by combining with an online
learning for world model. The actor, critic and world model
are jointly trained to fulfill multi-step foresight imagination. To
further enhance the performance, an overshooting scheme is
incorporated for long-term planning, and the multi-step rollout
is applied for stochastic prediction. The experiments on various
tasks with continuous actions show the merit of the proposed
MSAC for data efficiency in reinforcement learning.

I. INTRODUCTION

Deep reinforcement learning (RL) has been successfully
developed to learn complex behaviors in many challenging
tasks. Model-free RL algorithm relies on real samples from
environment and never uses the generated predictions of
next state and reward to alter the behavior. The transition
samples from interaction with environment provide the training
data to learn the agent without knowing the state dynamic.
Nevertheless, this algorithm suffers from the lack of data
efficiency. A large number of steps or trials are required to
interact with environment. On the other hand, model-based
algorithm captures the probability of state transition and reward
between two time steps under a Markov decision process.
However, the ground-truth model is difficult to obtain in
most of applications. This paper deals with the issue of data
efficiency by boosting the merits of model-free and model-
based algorithms. In the literature, deep Q-network (DQN) [1],
[2], [3] is seen as a popular model-free RL method which is
implemented for the tasks operated in discrete action space.
Deep Q-learning simply implements an implicit policy by
choosing the action with the largest Q-value. The estimated
Q-value can be improved according to the temporal difference
learning. The learning process can be conducted by reusing the
experience data since the learning policy is different from
the behavior policy. Nevertheless, the capability of DQN
is bounded because its extension to a continuous or large-
dimensional action space is difficult. On the other hand, the
policy-based methods [4], [5] are feasible to perform actions
in continuous action space. The realization of policy can be
either deterministic or stochastic. Since the policy is directly
parameterized, the decisions are then shaped by the resulting

action space. However, these methods continuously change
the policy during learning procedure. This situation causes
the difficulty of directly reusing the past experience data in
on-policy methods [6]. Data efficiency in policy learning is
degraded. To improve data efficiency, the proximal policy
optimization (PPO) [7], [8], [9], [10] was proposed. Basically,
PPO updated the current policy parameter by using the past
data according to the distribution distance from the previous
policies. A penalty was applied during policy updating when
the current policy far from the previous policy. Nevertheless,
PPO was still on-policy method which required new data
samples to be collected from the recent policy. An alternative
strategy to strengthen data efficiency is based on the actor-
critic methods which combine the value-based and policy-based
methods. A successful solution to continuous control problem
is based on the deep deterministic policy gradient (DDPG) [11].
DDPG is advantageous of adopting the off-policy updating
with the replay data according to the gradient of Q-value
function with respect to the deterministic policy parameters
[12]. Nevertheless, DDPG is still insufficient in exploration
and is sensitive to hyperparameter selection. There is an extra
effort required to adjust system parameters [13].

More recently, the soft actor-critic (SAC) [14] was proposed
as a model-free off-policy approach to learn a stochastic actor
driven by the best behavior modes with the maximum expected
reward under the maximum entropy framework. This framework
offered a new structure of energy-based value [15] which
explored high reward states by using the energy-based model.
However, since such a model-free method only handled the
reward signal relation, the sample efficiency in the environment
was disregarded. In general, model-based RL [16], [17], [18]
maintains the information of environment states which is
beneficial to improve sample efficiency. The properties of
individual states can be directly acquired similar to the scenario
that the agent knows the environment characteristics. But, in
real-world situations, it is difficult to identify the underlying
model of an environment. The methods we use to train a
world model from the past experience data can help the agent to
capture the dynamic of environment. However, the environment
representation considerably introduces the bias in predicting
the dynamic. It is crucial to reduce the model bias for decision
making in model-based methods.

This study aims to improve the data efficiency in model-free
RL where the advanced solution based on SAC is strengthened.
The sophisticated mapping from states to actions is developed.
In particular, we boost the advantages of model-free and model-
based methods to build an agent where the state dynamic
model is exploited to make a desirable long-term prediction.
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Basically, the model-free agent may adopt the information in
future horizon to improve learning efficiency. The challenge
in model-free method is the bottleneck for the quality of the
learned agent. Also, the cumulative bias is likely increased
during the rollout from current stage. This paper resolves these
difficulties by twofold approaches. First, the agent is learned
to rely on the experience data from real environment. A world
model is trained and combined with SAC so as to generate
samples which are adopted for future estimation. The generated
data in current stage are utilized in a way similar to a scenario
that the future agent is foreseeing. The agent is benefited
from real experience using the model-based SAC. Second,
a long-term regularization is imposed for model prediction.
The model bias is compensated in the rollout of states. The
samples of states from future horizon are merged to improve
the robustness of an agent. The agent is learned to act for
long sight. The experiments on continuous control tasks are
conducted to illustrate the performance of model-based soft
actor-critic.

II. BACKGROUND SURVEY

Reinforcement learning aims to learn an intelligent agent who
takes actions in an environment by maximizing the cumulative
reward. RL is basically modeled by an Markov decision process
with the notations (S,A, P,R, γ) where st ∈ S and at ∈
A denote the state and action, respectively, P denotes the
conditional distributions of state transitions p(st+1|st, at) due
to an action at, rt = r(st, at) ∈ R denotes the reward given
by the environment, and γ ∈ (0, 1) denotes the discount factor
in calculation of cumulative reward Rt =

∑T
i=t γ

i−tri at time
t. The goal of RL is to learn a policy which maximizes the
expected return from the start distribution J(θ) = E[R1|πθ]. In
general, RL agent based on the proximal policy optimization
(PPO) [7] aims to increase the training stability of policy
πθ(at|st) with parameter θ by reusing the experience data.
This agent optimizes a surrogate objective function [19] which
can approximate the data distribution for current policy with old
parameter θold. To improve the training stability, PPO further
uses the clipped objective function to limit the updating of
policy parameters. The clipping of probability distribution ratio
ωt(θ) =

πθ(at|st)
πθold (at|st)

in an interval [1− ε, 1 + ε] with a penalty
hyperparameter ε is performed to constrain the policy learning
in accordance with the learning objective J(θ) in a form of
[7]

E(st,at)∼ρπ [min(ωt(θ)Ât, clip(ωt(θ), 1− ε, 1 + ε)Ât)] (1)

where ρπ denotes the state and action distribution given by
policy πθ. The ratio ωt(θ) is computed as a clipped weight for
importance sampling over the estimator of advantage function
Ât = Aπθold (st|at) = Qπθold (st, at) − V πθold (st) with the
actions sampled from the current policy πθold . V π(·) and Qπ(·)
denote the state and the state-action value functions of a policy
π, respectively. Nevertheless, PPO still limits the learning
efficiency in a new environment although the approximation
of learning objective via clipping scheme does improve the
stability in policy gradient methods.

A. Actor-critic reinforcement learning

To enhance the learning efficiency, the actor-critic RL based
on deep deterministic policy gradient (DDPG) algorithm [11]
was developed by extending the deterministic policy gradient
algorithm [12] where the policy-based and value-based methods
were combined under an actor-critic framework. The actor is
updated by following the policy gradient theorem where the
gradient of learning objective given by Q-value function is
given by

∇θJ(θ) =
∫
s

ρµ(s)∇θµθ(s)∇aQµ(s, a)
∣∣∣
a=µθ(s)

ds

= Es∼ρµ
[
∇θµθ(s)∇aQµ(s, a)

∣∣∣
a=µθ(s)

]
.

(2)

In Eq. (2), ρµ(s) denotes the discounted state distribution and
µθ denotes the deterministic policy with parameter θ which
maps an input state s into a deterministic action a. On the
other hand, the critic in DDPG comparably performs the Q-
learning which uses the off-policy experience data to update
critic parameters. The Q-value function Qν(·) of the critic with
parameter ν is estimated according to the temporal difference
learning where the temporal difference error is calculated by
δt = rt+γQ

ν(st+1, at+1)−Qν(st, at). The updating of critic
parameter ν is performed by using the gradient

∇νJ(ν) = δt∇νQν(s, a). (3)

Using this deterministic actor-critic algorithm, the critic is
learned to approximate true action-value function. Qν(s, a) ≈
Qµ(s, a) is used in the implementation.

Basically, DDPG uses the off-policy Q-function to avoid
the importance sampling for policy gradient. This off-policy
method is feasible to increase data efficiency. However, DDPG
adopts the deterministic policy which still suffers from low
exploration in continuous action space. An explicit noise to
action could alleviate this issue. In addition, DDPG is also
sensitive to the variations of hyperparameters which likely
degrade the stability in training procedure. In [20], the twin
delayed deep deterministic policy gradient (TD3) was proposed
as an extension of DDPG. In particular, TD3 dealt with the
overestimation problem of Q-values in actor-critic RL which
led to a policy to receive the correct indication of states.
The estimation error was handled by finding the unbiased
estimation of value function based on the clipped double
Q-learning. In the implementation, two independent value
functions were approximated and learned to act as the critic
in TD3. The Q-values were clipped by using the minimum
Q-value function. The estimation bias of value function was
reduced for continuous control tasks. The delayed updating for
target neural network was also applied to improve the stability
in training this off-policy method.

B. Stochastic policy

To strengthen the exploratory behavior in RL, an explicit
noise was added to choose actions. The noise was also injected
to learn the parameters of neural networks of an agent so that a
more consistent exploration and a richer set of behaviors were

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

2029



attained. The environment dependent scalar in an adaptive noise
scaling scheme was chosen to reflect real exploration in state
space of an agent [21]. In [22], a learnable parametric function
was introduced to estimate the noise which controlled the action
with noise robustness. The noise parameter controlled the policy
for taking action which was affected by the corresponding
probability distribution where the distribution could be selected
to reflect physical meaning with mathematical interpretation.
Considering the stochastic policy in presence of continuous
actions, the Gaussian policy is popularly used to realize most
of the actions which are close to the mean and control the
actions which are spread out from mean with the variance.
This is different from the deterministic policy in DDPG using
Eq. (2) where only the certain point of Q-value is considered to
search the maximum position for the policy. Using stochastic
policy, the uncertainty of the action samples is represented
by the variance of Gaussian. The exploration is enhanced by
considering the stochastic actions which are around the mean
of the policy. The policy function f(·) is then driven by a
fixed state-independent parameter ξ which is characterized by
a Gaussian noise for exploring the action at = f(st; ξ) where
ξ ∼ N (µ, σ2). In addition, the mean and variance of Gaussian
policy can be determined by a neural network controlled by
the input of a given state. As a result, the policy is not only
learned to handle the complicated mapping between states and
actions but also determine the degree of exploration to the next
state with different actions. Such an exploration is adjusted
by the variance of the distribution which is learned from the
experience data. The agent could automatically and flexibly
explore the unknowns in environment with large variance. The
stochastic policy can be implemented by using the encoder
network of variational autoencoder [23] with the sampler
using the reparameterization trick. The sampler generates
the action from the policy distribution which is trained by
maximizing the expected total reward from the state-action
samples {st, at}. Correspondingly, the policy is learned to
search over the landscape of Q-value function, and is evaluated
to focus on some important states. Besides, Gaussian policy
also smooths the landscape so as to avoid trapping in local
minimum during learning procedure with Gaussian sampling
[24]. In this procedure, the policy distribution with convergence
is expected to shrink to a certain mode. Namely, the policy
is learned to concentrate around the optimal action for each
state. In case that the Gaussian policy converges to a sharp
distribution, the agent behaves similar to the deterministic
policy which means that the confidence of mapping the input
state to the target action is high. Such a policy collapses to
the mode in accordance with the Gaussian mean which finds
the optimal behavior in the action structure. This stochastic
policy is implemented in soft actor-critic.

C. Soft actor-critic

Soft actor-critic (SAC) [14] was proposed as an alternative
extension of DDPG where the style of stochastic policy
was implemented. SAC particularly carries out the entropy-
regularized reinforcement learning for maximum entropy (ME)

exploration based on soft Q-learning via

πME = argmax
π

E(st,at)∼ρπ
[
r(st, at) + αH(π(at|st))

]
(4)

where α is a temperature parameter to adjust the relative
importance of the entropy term H(·) against the reward rt.
Maximizing the entropy term in SAC is beneficial to increase
the diversity of the actions taken by the policy in training
procedure. The distribution of policy is implemented by the
reparameterization trick which is used to control the variance
of the behavior. By deriving from Eq. (4), the policy parameter
θ of a stochastic actor in SAC is equivalently estimated by
minimizing the expected Kullback-Leiblier (KL) divergence

E(st,at)∼D

[
DKL

(
πθ(·|st)

∥∥∥∥ exp(Qφsoft(st, ·)− V
ψ

soft(st)
))]

to push the estimated policy πθ(a|s) which is close to the
ME policy πME(a|s) =

exp {Qφsoft(s,a)}
exp {V ψsoft(s)}

. In this KL divergence,
α = 1 is specified and D denotes the set of previously sampled
states and actions which are stored in a replay buffer. The
energy-based policy is implemented by merging the energy
functions using the soft Q and value functions Qφsoft(·) and
V ψsoft(·) with critic parameters φ and ψ, respectively. The
critic parameters φ and ψ are estimated by minimizing the
squared residual errors for soft Q and soft value functions,
respectively. SAC has been successfully developed to behave
in continuous action space. But, the performance was still
constrained since the issue of sample efficiency was neglected.
To assure the performance of RL in continuous action space, the
policy should be capable of accurately mapping the observed
states into continuous variables. However, the exploration
space of continuous actions is significantly larger than that of
discrete actions. The improvement of a learned policy heavily
depends on the complicated structure of state space [25]. A
desirable policy needs to handle high-dimensional states as
well as actions. The issue of data efficiency is crucial to
guarantee a convergent training procedure and an effective
system performance for reinforcement learning.

III. MODEL-BASED SOFT ACTOR-CRITIC

This study aims to improve data efficiency in actor-critic
reinforcement learning. The model-based RL is incorporated
into a maximum entropy framework. The uncertainty of policy
is compensated to predict the state transitions and observations
based on stochastic actions according to the soft Q-learning as
addressed below.

A. Soft Q-learning

The policy in RL is usually learned from random ini-
tialization without knowing the state structure beforehand.
Under the complicated environments, the agent could not
precisely decide if the policy exploration should be continued
or not. This issue often yields the distribution of policy
prematurely collapsing to a position where some possible
action sequences are ignored. It is a trade-off between fast
trapping to a suboptimal model or slow convergence to a
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desirable solution. To handle this issue, the agent needs to
acquire useful information to allow policy to determine the
state-action mapping and the environment exploration by itself.
The entropy term in Eq. (4) measures the uncertainty of a
policy which is used for information maximizing exploration
and gradient updating optimization [26]. In [27], the on-policy
RL using the asynchronous advantage actor-critic also merged
the entropy of current policy in policy optimization. After
receiving the value signals to find advantage estimate Ât, the
entropy bonus H(·) is incorporated by adding it to calculate
the policy gradient as expressed by

∇θJ(θ) =E(st,at)∈ρπ
[(
Q(st, at)− V (st)

+ βH(πθ(at|st))
)
∇θ log πθ(at|st)

] (5)

where β is a control parameter. Higher entropy corresponds to
a larger updating. However, single-step entropy is insufficient
to encourage policy to explore informative actions in sequential
prediction. A meaningful alternative is to consider the objective
of maximizing the long-term entropy. The soft state-action value
of a maximum entropy policy is constructed with a discount
factor in a form of

Qπsoft(st, at) = r(st, at) + E(st+1,at+1,...)∼ρπ
[ ∞∑
i=1

γi

×
(
r(st+i, at+i) + αH(π(at+i|st+i))

)] (6)

which is obtained by extending Eq. (4). This soft Q-value is
naturally related to the energy-based policy model [28] for
stochastic continuous action according to

π(a|s) =
exp{ 1αQ

π
soft(s, a)}∫

ã∈A exp{ 1αQ
π
soft(s, ã)}

= exp

{
1

α
(Qπsoft(s, a)− V πsoft(s))

} (7)

driven by energy function E(st, at) = − 1
αQ

π
soft(st, at). The

energy gap between soft Q-value Qπsoft(·) and soft state value
V πsoft(·) with the interaction sample is increased. The policy is
seen as a form of softmax distribution of Q-value. From an
alternative perspective, the derived policy for taking an action
is also considered as a kind of softmax function or exponential
of advantage function enhanced by the long-term entropy value.
This soft Q-learning is fulfilled to implement the model-based
RL for soft actor-critic.

B. Model-based reinforcement learning

Model-based RL builds a model to represent the environment
behavior which can be characterized by Markov decision
process (MDP). Using MDP, the data samples are continu-
ously observed by following the state transition probabilities
according to the expected reward functions under a given
policy. Importantly, both of the state transitions and reward
functions can be explicitly represented by a dynamic model
which is trained to simulate the environment. Figure 1(a) shows
how the dynamic and reward model is merged to simulate

(a) (b)

Fig. 1: Illustrations for (a) model-based versus model-free
reinforcement learning and (b) on-policy rollout with stochastic
policy. The model can predict future steps with current
policy. The branches of trajectory are produced for experience
augmentation.

and switch with environment for model-based RL. Model-
free RL is implemented without this MDP model. With the
model of environment, the optimal action can be efficiently
searched for decision making and planning. Sample efficiency
is partially handled by the model-based RL. In [29], the
variational information maximizing exploration was proposed
for policy learning by providing an additional intrinsic reward
based on maximization of information gain as an exploration
strategy. In [30], the world model was developed by building the
generative neural network model to represent the environment.
This model was applied to infer the action with a controller. In
[31], the PlaNet was presented to mimic the dynamic model
for environment in presence of a latent representation which
was designed to act for planning. Basically, the aforementioned
methods are performed to explore the environment by training
the off-policy agent from random initialization so as to increase
the diversity of information using experience data. Figure 2
depicts the working flow for model-based soft actor-critic
(MSAC) where action is selected with an actor and a critic
which are trained by using the states and rewards from the
environment as well as the world model Mϕ with parameter
ϕ. The critic provides the values to actor and is delayed
when updating the model for environment so that the stability
for learning the policy can be improved. Data efficiency is
compensated by the samples from world model. Multi-step
bootstrap and long-term overshooting are applied. Actor, critic,
target model and world model are trained.

C. World model in learning an actor-critic

Basically, the policy information is learned to help the agent
to receive states from environment where the resulting values
are used to update policy by itself. The agent is trained to
oversee if additional information could be further acquired from
the existing experience data. Although the real-world interaction
brings faithful information to train agent, the collected data are
sparse and expensive. Hence, a world model is incorporated to
represent and simulate the data from environment. In particular,
this study extends the actor-critic framework by merging the
Markov decision process. The world model is simultaneously
learned with actor-critic. The agent is trained to interact with
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Fig. 2: Computational architecture for training the model-based
soft actor-critic. World model for environment is continuously
learned from the actor guided experience.

environment so that the actor-guided experience data are
collected to figure out the future trajectory. The dynamic model
is learned to predict the state and reward in a way like what true
environment may provide at each time step t. The approximate
MDP model for environment is feasible to promptly provide
the prediction in future steps to guide a training procedure
for agent to make decision from policy. The future states
st:t+T = {si}t+Ti=t within a trajectory of length T are predicted
by the dynamic model Mϕ using the decomposed distributions
of state transitions at individual time steps t ≤ i ≤ t+ T via

p(st:t+T |at−1:t+T−1, st−1) =
t+T∏
i=t

p(si|si−1, ai−1). (8)

The improvement of policy is based on the scenario when the
learning of world model is controllable under the predicted
dynamics of state and reward. A desirable agent is therefore
learned with the increased accuracy of behavior of world
model. The training of world model is self contained and
planned for pursuing future information without interacting
with real environment. The experience data collected from
rollout with current policy are seen as a kind of augmented
data. Figure 1(b) illustrates the rollout of trajectory branches
by using the stochastic actor which provides the action samples
for predicting next states by using the world model. The rollout
data used for policy updating can be continuously generated to
reflect the environment. The stability of training is sufficiently
increased. The sample efficiency can be improved by using
rollout data from future trajectory which is imagined from the
current policy. The stochastic policy draws the action samples
which contain multiple branches of state transitions. Owing to
these branches and uncertainties, this policy is more likely to
search a sequence of actions which reach a higher return in a
trajectory during interaction and exploration. As a result, world
model helps the policy which tends to re-examine the optimal
decisions in actual environment without getting stuck in local
optimum in training procedure. Such an approach is designed
to carry out a policy for long sight from any time step in a
trajectory, and act to utilize the parallel multi-step experience
data. The Q-value function during soft Q-learning is driven by
the accumulated reward and the policy entropy. The multi-step
updating of experience data can speed up convergence for
policy optimization.

D. Implementation procedure and algorithm

In policy evaluation, the Q-value of critic network with
a discount factor γ is estimated with N time steps as the
bootstrap for state value function at next step N + 1 via

Qw(st, at) =

N∑
i=0

γir(st+i, at+i) + γN+1V (st+N+1).

This multi-step bootstrap is used to improve the approximate
value function so as to calculate the temporal difference loss

JQ(w) = E(st,at)∼D

[(
Qw(st, at)

−
( N∑
i=0

γir(st+i, at+i) + γN+1Ṽ (st+N+1)
))2] (9)

where

Ṽ (st+T+1) = Qw−(st+T+1, at+T+1)− log πθ(at+T+1)

by introducing the target network Qw−(·) which is continuously
updated by critic or behavior network Qw(·). This loss is
minimized to find critic parameter w. The policy improvement
in actor-critic is affected by these Q-value functions. Policy
updating is performed in an off-policy way similar to that in
DDPG. Different from DDPG, this model-based soft actor-
critic considers the whole policy with stochastic actor using
the energy-based value function. The policy π is learned by
minimizing the criterion

Jπ(θ) = Est∼D[DKL (πθ(·|st)‖ exp(Qπold(st, ·)))]
= Est∼D[log πθ(·|st)−Qπold(st, ·)].

(10)

MSAC does not simply take the action with the largest Q-
value. The online learning over the world model in MSAC is
guided with the maximum entropy policy where the diversity
of experience is increased to capture the structure of states.
In the implementation, the issue of overestimation of critic
parameter w likely happens due to the noise in calculation of
temporal difference error which may incur bias information
from interaction with environment. Such a bias is here reduced
by adopting twin networks {Q(1)

w , Q
(2)
w } for critic and the

corresponding networks {Q(1)
w− , Q

(2)
w−} for target where w− ←

τw− + (1 − τ)w is used with a parameter τ . The training
stability and robustness is improved by selecting the smaller
Q-value via Q(s, a) = min(Q(1)(s, a), Q(2)(s, a)).

Fig. 3: Illustration for world model Mϕ by using overshooting.
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Importantly, MSAC builds the world model in a form of
deep neural network which predicts the complicated dynamics
of state and reward from time t to t + 1 expressed by the
function {st+1, rt+1} = Mϕ(st, rt). Given the world model,
MSAC is able to plan by choosing the action with maximum
reward. Agent can plan for future horizon and take action to
achieve the maximum total reward via Monte Carlo tree search
at each time step t along an interval with length H via

ât = argmax
at

t+H∑
i=t

r(si, ai) (11)

where {st+1, rt+1} are obtained from Mϕ by using {st, rt}
and are applied to find action at+1 via maximum total reward
through Monte Carlo policy optimization. If the world model
Mϕ predicts accurately, the dynamics of state and reward in
multiple steps can be reliably calculated in a recursive way.
The multi-step backup is useful to improve the estimation
of value function. In this study, model predictive control is
performed to allow the agent to adapt its plan based on the
newest observations. The real experience data are given from
the environment. These data are recycled in replay buffer which
are used to update parameters ϕ for model Mϕ. Model capacity
is considered in this work. The larger model is more likely
accurate but the computation cost is larger and the online
learning is harder for policy. The world model with suitable
size is implemented. In the implementation, the autoregressive
overshooting method as illustrated in Figure 3 is merged for
three-step prediction (L = 3) from st to st+1, st+2 and st+3.
Therefore, the probabilistic cost function for the world model
JM (ϕ) is formed for minimization over

−E(st,at)∼D

[ L∑
i=0

log pMϕ
(st+i+1, rt+i+1|st+i, at+i)

]
.

Algorithm 1 shows the implementation for MSAC. Parameters
ϕ, θ and w are sequentially updated by minimizing JM , Jπ
and Jw, respectively. The lengths for planning M , overshooting
H and bootstrapping N are hyperparameters.

IV. EXPERIMENTS

A series of experiments on MuJoCo continuous control tasks
[32] were conducted and compared to evaluate the agents which
were trained by using PPO [7], DDPG [11], SAC [14] and the
proposed model-based SAC.

(a) (b) (c)

Fig. 4: Examples of MuJoCo environments including (a)
Hopper-v2, (b) HalfCheetah-v2, and (c) Ant-v2.

A. Experimental setup

MuJoCo tasks were simulated through the environments
based on the standard interaction protocol using OpenAI
Gym [33] which has been widely evaluated for reinforcement
learning. Figure 4 shows three examples of environments
in this study. The standard settings of reward functions and
state constraints were adopted. The standard interaction loop
was performed to facilitate the reproducible implementation
and consistent comparison with the related methods. Using
MSAC, the energy-based policy based on maximum entropy
framework was implemented. The actor network consisted of
two hidden layers with two sets of outputs which corresponded
to mean and standard deviation of a Gaussian policy. The critic
network was composed of two hidden layers to find Q-value
function. Each layer had 256 hidden units. The architecture
of world model or MDP model was specified according to
the complexity of environmental dynamics. Generally, the
model with the increased complexity provided more accurate
prediction of fine state structure but also required a larger
amount of calculation. This study would like to investigate
how a compact model was used to build the policy to learn
effectively. World model adopted a similar architecture as critic
network. The networks of actor, critic and world model were
trained from random initialization. The parameter updating
was performed by using Adam optimizer. The critic network
was configured by the clipped double Q-network [34] which
handled the overestimation problem in value function. This
twin network independently measured the Q-value so as to
efficiently predict the dynamics of state and reward in learning
process. The delayed updating was applied for critic network.
The target network with parameter w− was implemented as a
delayed and interpolated copy of critic network with parameter

Algorithm 1 Model-based Soft Actor-Critic

Initialize actor network πθ(a|s), critic networks
Q

(i)
w (s, a), i ∈ {1, 2}, and world model Mϕ(s, a)

Initialize replay buffer D and target networks
Q

(i)
w−(s, a)← Q

(i)
w (s, a), i ∈ {1, 2}

for each episode do
receive initial observation state s0
for each time step t do

select action at with planning by (11)
observe reward rt and new state st+1

store transition (st, at, rt, st+1) in replay buffer D
update world model with overshooting
ϕ← argmaxϕ E[log pMϕ

(s′, r′|s, a)]
sample transition (st, at, rt, st+1) from D
rollout multiple steps and collect on-policy data
update actor network θ by (10) and critic network
w with multi-step bootstrap (9)

update target network w− via
w−i ← τw−i + (1− τ)wi, i ∈ {1, 2}

end for
end for
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Fig. 5: SAC versus MSAC with different rollout steps for
policy updating. Overshooting method is disregarded.

w. The delayed updating in accordance with the temporal
difference error was performed to reduce the variance of the
estimated value function which could avoid the sub-optimal
improvement for policy. There were two interaction loops when
training the agent. At the beginning, the agent was trained by
only relying on the data collection from policy without knowing
the ground-truth state transitions. World model acted as the
virtual environment to make prediction. The delayed updating
was applied to deal with the robustness issue in the predicted
state transitions by world model. The schedule of delayed
updating was basically controlled to predict state transitions
which was slower than that of applying replay buffer. Linear
replay buffer was used. The performance was evaluated in
terms of total return from the environment. At the end of each
training epoch, the next 10 episodes using current policy were
evaluated to measure the expected return. The results on the
expected return were averaged over the policy initialization
using five different random seeds. RL algorithms using PPO,
DDPG, SAC and MSAC were included for comparison. Each
policy used a purely random exploratory for 50K steps to
remove the dependencies caused by the initial parameters.

Fig. 6: Comparison of learning curves using different methods.
Overshooting method is applied.

B. Experimental result

Different from SAC, the proposed MSAC implements the
model-based reinforcement learning using the stochastic policy

TABLE I: Comparison of average returns using different
methods under different tasks.

Agent Hopper HalfCheetah Ant
PPO 2494.15 2947.84 2166.44
DDPG 2040.11 8902.48 2302.92
SAC 3137.44 9002.84 6197.56
MSAC 3446.54 9010.74 6443.08

where multi-step rollout is merged. The rollout data are viewed
as an augmentation for experience replay. Figure 5 shows the
effect of rollout steps in the learning procedure using MSAC.
Notably, the rollout steps are performed without adopting
the overshooting method. The increase rollout steps does not
improve the learning stability in presence of world model. The
information from world model could provide the hint to avoid
policy to forget the knowledge from data examples which were
learned before. Rollout steps likely improve learning efficiency.
However, the bias of the rollout from world model is possi-
bly increased to degrade the performance. Accordingly, this
situation highlights the importance of overshooting method in
planning for model-based SAC. The case of three rollout steps
is better than other cases. In the following, the overshooting
scheme is applied in MSAC. Figure 6 and Table I compares
the learning curves and the average return over episodes by
using different methods, respectively. The experience result
shows that the proposed MSAC is faster and uses smaller
number of interactions to reach the desirable performance.
MSAC receives higher average return than other methods.
Data efficiency is significantly improved by using the model-
based SAC. The interaction steps from the environment can
be reduced to achieve high-performance policy after model
training. PPO performs better than DDPG in Hopper task but
gets worse in other tasks. MSAC consistently obtains the best
results in various tasks in the comparison.

V. CONCLUSIONS

This paper has presented the stochastic policy and world
model for continuous control tasks which were jointly trained
to fulfill data efficient reinforcement learning. The model-
based soft actor-critic was proposed and learned from random
initialization without knowing the ground-truth dynamics of the
environment. Online learning of world model was performed
to mimic the environment without any pretrained model. The
hybrid training of soft policy and virtual environment was better
than the individual training of them. From the experiments
on high-dimensional reinforcement learning, sample efficiency
was significantly improved when compared with the strong
baseline method using the soft actor-critic. With the benefits
from stochastic policy, multi-step rollout, long-term planning
and overshooting for prediction, the proposed model-based
SAC only took one third of interaction steps to achieve the
competitive performance as obtained by the best baseline
method using SAC. Curse of dimensionality was eased for
efficient exploration on the states and actions. The issue of
data efficiency was handled. The usefulness of reinforcement
learning was improved.
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