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Abstract—In sequential learning tasks, recurrent neural net-
work (RNN) has been successfully developed for many years.
RNN has achieved a great success in a variety of applications
in presence of audio, video, speech and text data. On the
other hand, temporal convolutional network (TCN) has recently
drawn high attention in different works. TCN basically achieves
comparable performance with RNN, but attractively TCN could
work more efficient than RNN due to the parallel computation of
one-dimensional convolution. A fundamental issue in sequential
learning is to capture the temporal dependencies with different
time scales. In this paper, we present a new sequential learn-
ing machine called the multi-resolution convolutional recurrent
network (MR-CRN), which is a hybrid model of TCN encoder
and RNN decoder. Utilizing the representation learned by TCN
encoder in different layers with various temporal resolutions,
RNN decoder can summarize the contextual information with dif-
ferent resolutions and time scales without modifying the original
architecture. In the experiments on language modeling and action
recognition, the merit of MR-CRN is illustrated for sequential
learning and prediction in terms of latent representation, model
perplexity and recognition accuracy.

I. INTRODUCTION

Deep machine learning has been achieving a great suc-
cess in many real-world applications. With these successful
applications, we are able to extend the applications to other
unknown tasks and accomplish the desirable performance by
deep neural networks (DNNs) through collecting sufficient
training data and optimizing a specialized objective function
with the well-defined observation inputs and target outputs.
Among different learning machines, sequential learning is
one of the most popular and influential mechanisms which
are developed to characterize the temporal dependencies and
patterns from sequence data. The sequence data, e.g. natural
sentences, audio and speech signals and video streams are
everywhere in our daily life. Deep learning models have been
extensively constructed to represent the underlying temporal
relationship between sequence samples and their correspond-
ing target outputs. Basically, the temporal dependencies in the
mapping between inputs and outputs are complicated. It is
especially difficult to capture long-term dependencies in long
sequence data. Accordingly, a fundamental issue in sequential
learning is to identify the sequential patterns with different
lengths. Many researchers have been dedicating to study and
overcome these challenges and difficulties.

Recurrent neural network (RNN) [1], [2], [3], [4], [5]
have been developed to characterize sequential patterns for
many years. RNNs dynamically calculate the hidden states
and propagate them to the next time steps. This sequential
machine summarizes the history information from the past
inputs {x1, . . . ,xt−1} and distills the information to predict

the next sequential output yt conditioned on the current
input xt and the previous hidden state ht−1. Using RNNs,
the hidden state ht is continuously updated by a series of
linear and nonlinear transformations which provide an avenue
to characterize the complicated probability distribution over
sequential data. RNN based models are fitted to sequential
learning. Some variants of sequential learning machines, like
long short term memory (LSTM) [2] and gated recurrent unit
(GRU) [6] and transformer [7], have been proposed to improve
the robustness of performance via the gating and attention
mechanisms. In particular, the gating mechanism makes the
temporal dependencies sufficiently preserved in hidden states
compared with the standard RNN. Recurrent networks with
gating mechanism are seen as a kind of mainstream method
in deep learning.

Despite of the success of RNNs, convolutional neural
network (CNN) [8] has emerged as a rising approach to
handle learning representation of sequence data. CNN has
been popular in the areas of computer vision due to its
powerfulness of capturing the local information especially in
spatial data. Recently, CNN has been developed to capture
local information in temporal data. When the one-dimensional
convolution operation is applied in time domain, the resulting
model, called the temporal convolutional networks (TCN) [9],
[10], has been exploited. Further, the tricks of dilation, residual
connection, and causality were imposed to TCNs to improve
sequential learning. Compared with RNN, TCN takes the
advantage on the parallelism in computation. The inference
using TCN is much faster than that using RNN. Meanwhile,
the performance of TCN is also comparable to RNN so that
TCN related works are now drawing more and more attention
in the related areas in recent years.

No matter how the learning representation is based on TCNs
or RNNs, it is important to capture long-term as well as
short-term dependencies in sequence data. Basically, RNNs
with gating mechanism can capture long-term dependency
better than a vanilla RNN. But, RNNs are still suffering
from the problem of gradient vanishing. As a result, many
researches are devoted to deal with this issue. On the other
hand, the temporal hierarchy using TCNs is meaningful and
attractive. The context with different sizes of receptive fields
can be learned in different layers of TCNs in a bottom-up
manner. Local information is utilized sufficiently. However,
the temporal patterns with infinite length cannot be handled
by TCNs. This paper presents a new model, called the multi-
resolution convolutional recurrent network, which would like
to boost the strength of TCNs and RNNs. We use TCNs as
local feature extractor to encode the information with multiple
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time scales, and then feed this information to RNNs where
local and global features are learned. This model relaxes the
loading of RNNs by allowing TCNs share the responsibility
to learn local features. With the preprocessing done by TCN,
each RNN can focus on the modeling of temporal dependency
from context with a certain scale.

II. SEQUENTIAL LEARNING

A. Background and motivation

In sequential learning, it is challenging to preserve long-
term dependencies without forgetting short-term memories in a
sequence of observations. An effective approach to tackle this
challenge is to implement the recurrent networks by merging
with temporal information from multiple time scales. The re-
lated works include the clockwork RNNs [11], phased LSTMs
[12], hierarchical multi-scale RNNs [13]. In [14], the dilated
RNNs were proposed to characterize the temporal patterns
with multiple resolutions by means of the dilation in recurrent
connections. Dilation here means the skipping of inputs with
a certain step size. Dilation is an important scheme which was
first proposed for CNNs in [15]. Due to dilated connections,
the receptive fields in the representation can be expanded
exponentially by increasing the depth of a deep model. Such
a dilation was not only employed in RNNs [14] but also in
temporal convolutional networks (TCNs) [9], [10]. In [16],
[17], the long and short-term time-series network (LSTNet)
and the hybrid CNN, LSTM and DNN (called CLDNN)
were proposed to strengthen deep models by combining dif-
ferent model structures. Both LSTNet and CLDNN adopted
CNNs and RNNs to represent the multivariate time series.
However, two-dimensional or multi-dimensional convolution
in CNNs was not clearly fitted to sequential learning when
compared with one-dimensional convolution in TCNs. This
paper presents a hybrid network architecture by capturing the
multi-scale contextual information in TCN and simultaneously
aggregating the long-term information via multiple RNNs.
Since TCNs are good at extracting local features and RNNs
are fitted to forecast time series, the proposed hybrid model is
comprehensive and reasonable. Moreover, due to the dilated
connection in TCNs, there is no need to apply skip connection
for RNNs like LSTNet. The multivariate sequence data are
directly characterized without modifying the architecture of
RNNs. Furthermore, the proposed method waives the need of
skipping the state updating like skip RNN [18]. The detailed
computation model is addressed in what follows.

B. Convolutional recurrent networks

Basically, TCNs represent the sequence data based on one-
dimensional convolution with dilation while the receptive field
of a time sequence is exponentially expanded by increasing
the depth of neural network. Because of the stacked dilation
layers, there is a temporal hierarchy where the representation
learned in the upper layers contains the larger span of context
from sub-sequences. This representation is strictly increasing
with the height of a deep neural structure. Since we would like
to capture temporal dependency with various time scales, this

property is attractive to accomplish this goal. However, the size
of receptive field is still bounded by the number of layers in
TCN. Meanwhile, recurrent neural networks (RNNs) are good
at temporal modeling, but may suffer from gradient vanishing.
RNNs with gating mechanism [2], [6], [19] generally capture
the temporal patterns without the limitation in the length of
sequential modeling. As a result, it is natural to introduce an
RNN as the top layer to relax the limitation in TCN. The
temporal hierarchy is extended. The so-called convolutional
recurrent network (CRN) [20], [21] is therefore proposed.

    

    

    

Fig. 1: Graphical model of convolutional recurrent network.

The graphical representation of CRN is shown in Figure 1
which is seen as a concatenation of TCN and RNN. In
this hybrid model, TCN basically calculate one-dimensional
convolution with dilation to find dl

t at time-step t and layer l
which summarizes the input sequence x1:t as follows:

dl
t = Conv(l)

(
dl−1
t ,dl−1

t−j

)
(1)

where j = 2l−1 and d0
t = xt denote the features of first layer

for every time steps t. The information is propagated in a
bottom-up direction. Different layer of convolution Conv(l)(·)
adopts individual parameters. The upper layers summarize
the context with larger span of time scales. After the TCN
calculation with L layers, the outputs of TCN dL

1:T are then
used as inputs to feed into RNN. This RNN is able to transmit
the information horizontally along the whole time horizon.
Here, LSTM is used to implement this RNN by

it = σ
(
Wid

l
t +Uiht−1 + bi

)
ft = σ

(
Wfd

l
t +Ufht−1 + bf

)
ot = σ

(
Wod

l
t +Uoht−1 + bo

)
ct = ft � ct−1 + it � σc

(
Wcd

l
t +Ucht−1 + bc

)
ht = ot � tanh (ct)

(2)

where ht denotes the recurrent state, � denotes the
element-wise product, σ(·) denotes the sigmoid func-
tion, {Wi,Ui,bi}, {Wf ,Uf ,bf}, {Wo,Uo,bo} and
{Wc,Uc,bc} denote the parameters from the input of TCN
dl
t to input gate, forget gate, output gate and cell, respectively.

Basically, using this hybrid model, TCN acts as a local context
feature extractor or encoder while RNN is viewed as a decoder
with global view. In this two-stage model, TCN embeds the
local information first, which simplifies the task for RNN
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decoding. One-dimensional convolution in TCN is to capture
local features while RNN is good at temporal information
representation. Therefore, such a mixture of RNN and TCN is
beneficial to acquire short-term and long-term information for
prediction. This model also extends the temporal hierarchy,
which releases the limitation and increases the capability of
capturing structural temporal dependency. The dilation in TCN
allows efficient computation in the implementation.

III. EXTENDED STUDIES

A. Generalization and interpretation

Convolutional recurrent network (CRN) is a generalization
of both TCN and RNN where a kind of encoder-decoder
network is configured for sequential learning. This CRN is
simplified as TCN in case that the decoder doesn’t depend
on the previous state ht−1. Accordingly, in this case, the
sequential machine only captures the temporal dependencies
within a limited length because the temporal information is
not propagated in LSTM. This machine partially forgets past
information. On the other hand, in case that the TCN encoder
has the specialized wights such that the condition of aligning
TCN features in different layers

dl
t = Conv(l)

(
dl−1
t ,dl−1

t−j

)
= dl−1

t (3)

is met. This learning machine is then realized as LSTM
which implies that the convolution layers only propagate the
inputs to the upper layers. This simplification weakens model
capability because the local dependencies of sequence data via
convolution calculation are missing. As illustrated in Figure 1,
if the green computational path is suspended, this CRN will
become an RNN. And if the red computational path is stopped,
this CRN will realize as TCN. The general model using CRN
considerably extends the temporal hierarchy using TCN. The
incorporation of RNN as upper layers in CRN sufficiently
captures longer temporal dependencies in sequence data with
larger time scales or wider receptive fields. CRN is viewed as
an extension of temporal hierarchy in TCN by merging with
a recurrent machine using LSTM.

Fig. 2: Encoder in multi-resolution convolutional recurrent network.

B. Multi-resolution convolutional recurrent networks

Convolutional recurrent network is configured as a hybrid
network structure which integrates the merits of TCN and
RNN by using TCN as an encoder and RNN as a decoder.

Fig. 3: Decoder in multi-resolution convolutional recurrent network.

However, we challenge that this architecture may not com-
pletely acquire and utilize the highest benefit from the com-
bination of TCN and RNN. This paper further extends CRN
by strengthening its capability via a so-called multi-resolution
convolutional recurrent network (MR-CRN). Figures 2 and
3 illustrate the graphical representation of the hierarchies of
encoder and decoder of MR-CRN, respectively. The examples
of three-layer encoder and decoder in multi-resolution CRN
with L = 3 are shown. Encoder is seen as a standard TCN
with three layers for calculation of outputs d3

1:T given input
sequence x1:T . Dilation is applied in different layers. The first,
second and third layers of TCN span the receptive fields with
sizes 2, 4 and 8, respectively. Local information in a short
subsequence is learned first and then gradually propagates
to upper layers where the longer temporal dependencies are
represented. The information with different sizes of receptive
fields in encoder is seen as the multi-resolution information
or multi-time-scale temporal dependency which is adopted in
decoder for MR-CRN.

The main difference between CRNs without and with multi-
resolution lies on the decoder. Generally, the local features
dl
1:T learned in different layers l of TCN are provided as the

inputs to a deep recurrent neural network with L layers by
calculating the hidden states in different layers

hl
1:T = RNN(l)

(
dl
1:T

)
, for l = 1, . . . , L (4)

where RNN(l)(·) denotes the individual parameters of RNN
in different layers l. The temporal structure in different layers
of TCN captures different resolutions of local features in an
observation sequence. The RNN RNN(l)(·) summarizes these
local features as a set of global features. After this calculation,
different hidden states hl

1:T in L layers of RNNs are added
to produce a single sequence of hidden states h1:T with an
integration of multi-level resolutions in a form of

ht =

L∑
l=1

hl
t, for t = 1, . . . , T (5)
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To construct the supervised classification network, this single
state sequence h1:T is transformed to find the posterior prob-
abilities corresponding to K different classes ŷ1:T which are
matched with the one-hot target sequences y1:T by minimizing
the cross-entropy error function

L(y, ŷ) = −
T∑

t=1

K∑
k=1

ytk log(ŷtk). (6)

Stochastic gradient descent algorithm [22], [23] is imple-
mented to estimate the parameters of L layers in a backward
manner from RNN to TCN through the error backpropagation
procedure. Basically, using CRN, the representation of the last
layer in TCN is encoded and fed into an RNN decoder. How-
ever, the individual hidden features dl

1:T in different layers
l reflect temporal dependencies or embeddings with different
lengths and different levels of resolutions. The context in lower
layers encode more local information. MR-CRN utilizes these
valuable embeddings as different degrees or resolutions of
local information, and then calculates the corresponding global
features using RNN decoders in individual layers. The disen-
tangled global features with different temporal resolutions are
calculated by layer-dependent RNNs and integrated to estimate
the sophisticated values of class posteriors ŷ = {ŷtk} to match
with one-hot class targets y = {ytk} for classification. MR-
CRN captures richer information than the dilated RNN [14]
where structural local features and multi-level resolutions were
missing. From an alternative perspective, this multi-resolution
CRN is seen as a composition of multiple CRNs in various
layers which naturally learn multi-resolutions in an integrated
network. The proposed MR-CRN is investigated for sequential
learning for word prediction and action recognition.

IV. EXPERIMENTS

This study conducts two sets of experiments which would
like to investigate the effect of various temporal information
in different domain data.

A. Evaluation for language modeling

Penn Treebank (PTB) [24] dataset was used to evaluate
the performance of sequential learning using different mod-
els. PTB was widely used in natural language processing
for evaluation of word prediction. There were 10K words
in the dictionary. The sentences for training, validation and
test consisted of 929K, 73K, 82K words, respectively. The
capital letters, numbers and punctuations were removed in text
preprocessing. Each input sentence was trimmed to length of
20 words in order to learn long sequence in an efficient way.
This dataset was used to examine word-level prediction for
language model. Latent spaces using different methods were
analyzed. Perplexity was measured to investigate how well a
probability distribution or language model, normalized by the
length of sentence, predicts the future words. Lower perplexity
generally implies better performance in word prediction. For
comparison, LSTM (here denoted as RNN) [2], TCN [9], [10],
stochastic TCN (STCN) [25] and the proposed CRN [20],
[21] and MR-CRN with L = 3 were implemented by running

twenty epochs using SGD algorithm. For comparative study,
the recurrent convolutional network (denoted as RCN) was
carried out as RNN encoder and TCN decoder. The recurrent
recurrent network (denoted as RRN) implemented a 2-layer
RNN. The mini-batch size was twenty. Gradient clipping [26]
was applied to mitigate the gradient vanishing in learning
procedure. All parameters were uniformly initialized between
-1 and 1. Recurrent dropout was used in each layer’s outputs
with a dropout rate 0.5 [27]. The size of hidden states and
the amount of kernels were adjusted in different models to
obtain desirable performance using validation data. The size
of hidden states was 450 for all models using LSTM. Model
size was included in the evaluation.

Fig. 4: Latent space of word embeddings in RNN.

Fig. 5: Latent space of word embeddings in RRN.

For illustration, we investigate a sentence from PTB which
is “that commercial which said mr. coleman wanted to take
away the right of abortion even in cases of rape and incest
a charge mr. coleman denies changed the dynamics of the
campaign 〈unk〉 it at least in part into a 〈unk〉 on abortion”
where 〈unk〉 means an unknown word. RNN, RRN and CRN
are compared in Figures 4, 5 and 6 where the standard word
embeddings, RNN word embedding and TCN word embed-
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Fig. 6: Latent space of word embeddings in CRN.

ding are visualized after the dimension reduction using the
t-distributed stochastic neighbor embedding (t-SNE), respec-
tively [28]. Typically, each word is projected to a fixed vector.
The words appear more than once in the sentence will only
show one time in RNN where standard word embeddings are
examined. Standard word embeddings ignore local information
because RNN just focus on single words. The words are not
clearly separated in latent space using RNN. However, the
word embeddings in RRN and CRN are different from those
in RNN. Depending on the context using RRN and CRN,
a word can be projected to similar but different vectors in
RNN and TCN word embeddings, e.g. the words ‘the’, ‘of’,
‘mr.’, ‘coleman’, etc. Interestingly, the proposed CRN uses
the embeddings of ‘which’ and ‘commercial’ which are very
closely. This implies that CRN can understand the relation
between these two words where the word ‘which’ connects to
the word ‘commercial’ in this sentence. This is a kind of local
information where TCN can capture. On the other hand, RNN
and RRN cannot recognize such a word relation. Therefore,
local information via TCN encoding in the first stage is useful.
RNN encoder may partially capture local information, but is
not as good as TCN encoder. In this comparison, the word
embeddings in CRN perform well and reflect local information
for RNN decoder which is helpful for language modeling.

TABLE I: Perplexity (in three phases) and model size using PTB.

Model #Params Train Validation Test
RNN 8.8M 101 128 123
RCN 9.5M 125 129 125
RRN 10.4M 90 126 122
TCN [9], [10] 7.0M 100 138 131
STCN [25] 13.1M 97 125 120
CRN 11.1M 79 119 116
MR-CRN 18.5M 59 108 98

Table I compares the model size and the perplexity in
training, validation and test phases by using different models
including RCN, RRN, RNN, TCN, STCN, CRN and MR-
CRN. The best result is shown in bold. RRN obtains lower
perplexities than RCN. The performance of RCN is degraded

and even performs worse than RNN. This result confirms the
selection of model architecture with the order of TCN encoder
and RNN decoder. CRN outperforms RNN, RCN and RRN
in terms of perplexity. The strengths of TCN and RNN are
complementary. The order in configuration of cascading TCN
and RNN is important. CRN boosts the strengths of TCN and
RNN. CRN captures the temporal dependencies better than
RNN and TCN. TCN obtains higher perplexity but consumes
smaller number of model parameters than RNN. This is due
to the convolution calculation in TCN. In addition, stochastic
variant of TCN performs better than TCN, but the model size is
increased significantly due to additional memory consumption
from prior network and inference network. Nevertheless, CRN
obtains lower perplexity than STCN with even with smaller
model size. Among these methods, the lowest test perplexity is
achieved by using MR-CRN while the model size is increased
as well due to multi-level resolutions using multiple layers of
encoders and decoders. MR-CRN resolves the possible model
overfitting in CRN. With the multi-time-scale contextual infor-
mation, the proposed MR-CRN sufficiently capture long-term
and short-term temporal patterns, and desirably behaves and
performs for word prediction.

TABLE II: Classification accuracy and model size using UCF101.

Model #Params Accuracy
RNN 6.3M 77.9%
RRN 8.8M 79.1%
TCN [9], [10] 6.1M 81.8%
CRN 9.7M 82.7%
MR-CRN 11.9M 84.5%

B. Evaluation for action recognition

Sequential learning is further evaluated for human action
recognition using UCF101 [29], [30]. UCF101 consisted of
13,320 video clips with diverse forms of camera motion and
illustration from 101 action classes. Each video clip has a
frame rate of 25 (frames per second) with various lengths.
The resolution of 320 x 240 pixels was recorded. Different
from language modeling using TCN encoder, the task of
video classification adopted an CNN which transformed a
video stream into a sequence of local features. Next, the
TCN encoder and RNN decoder were applied to capture the
short-term and long-term temporal information and implement
the CRN for classification outputs for action classification. In
this set of evaluation, RNN, RRN, TCN, CRN and MR-CRN
(L = 3) were implemented. Different models were trained by
twenty epochs with Adam optimizer[31]. The size of hidden
states or the amount of kernels was set as 512 for all models.
A pretrained ResNet [32] from ImageNet was used as the
CNN to find a set of embeddings for sequential learning. The
training batch size was fixed at 40 and the initial learning rate
was set at 103. The results are shown in Table II. In action
recognition, local information is more important than long-
term dependency since TCN performs better than RNN and
RRN with reduced model size. It is important to characterize
local dynamics in adjacent frames. The hybrid model CRN
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obtains higher accuracy than individual RNN and CRN. In this
comparison, the highest classification accuracy is achieved by
using MR-CRN. In summary, the proposed multi-resolution
convolutional recurrent network consistently performs better
than other individual and hybrid methods in two tasks with
data in different domains.

V. CONCLUSIONS

This paper presented a new sequential learning method
based on the multi-resolution convolutional recurrent network.
The local and global features as the temporal information
in sequence data were captured via a cascade of temporal
convolutional network and recurrent neural network, respec-
tively. The convolutional recurrent network was accordingly
proposed as a general framework of TCN and RNN where
the advantages of both individual models were captured. In
CRN, the local information was reflected by TCN encoder
while RNN played a role of decoder with a global view.
In particular, the proposed CRN was further strengthened by
incorporating the information of multi-level time scales in
representation of multivariate time series. The multi-resolution
CRN was proposed to sufficiently utilize different scales of
temporal information. The experiments on sequential predic-
tion in language modeling and action recognition showed
that the hybrid models using CRN and multi-resolution CRN
performed better than stand-alone models and other hybrid
models with different order of stacking or cascading in model
integration. Future work will be extended by introducing
stochastic modeling and topic modeling [33], [34], [35], [36]
in multi-resolution CRN.
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