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Abstract—This paper presents new feature representation
methods for the network intrusion detection. Like conventional
work, our method is based on neural networks. However, rather
than focusing on the network architecture search, we improve
the performance by developing effective feature representation
methods. First, we apply the embedding method to categorical
features in the network data. Although embedding has been
commonly used in natural language processing and recommen-
dation systems, categorical features in network problems were
often ignored or simply used in a one-hot-encoding vector form.
By applying the embedding method to categorical features, we
can effectively exploit them. Second, we apply a robust scaler to
numerical features. Numerical features are concentrated in a few
clusters with a small portion of outliers, and we can effectively
remove outliers with a robust scaler. Finally, we augment feature
vectors with categorical representations of numerical values.
These categorical representations (e.g., high, medium, and low)
help to discover simple logical rules and facilitate the intrusion
detection. We have applied our method to two scenarios: a
normal/attack classification and an unsupervised learning of
anomaly detection. Experimental results have shown that the
proposed method outperforms conventional methods on public
benchmark datasets.

Index Terms—Network intrusion detection, Feature represen-
tation, Feature embedding

I. INTRODUCTION

With the advancement of cloud computing and the Internet
of Things (IoT), the volume and usage of communication
networks have been greatly increased in recent decades.
Also, securing network from malicious network intrusions
have become ever more important. In order to address the
security issues, numerous intrusion detection methods were
proposed based on classical machine learning techniques,
such as support vector machine (SVM) [1] and random
forest (RF) [2]. However, like many other research fields,
these classical methods have been replaced with deep neural
networks: Numerous methods were proposed based on fully
connected networks (FCNs), convolutional neural networks
(CNNs), and recurrent neural networks (RNNs). Although they
outperformed classical methods [3], we still believe there is
room for performance improvement, since most researchers
focused on the design of neural network architectures.

In this paper, we focus on feature representation methods
and propose new feature pre-processing and embedding meth-
ods for network intrusion detection. Network data consist of
categorical (e.g., transaction protocol, type of service), numer-
ical (e.g., duration, transmitted data size), and nominal (e.g.,

IP address, port number) features and these features are used
to detect suspicious activities [4]. In conventional methods,
numerical features are directly fed into neural networks and the
categorical features are either used in the form of a one-hot-
encoding or ignored (probably due to its high dimensionality
in one-hot representation). Nominal features are seldom used:
IP addresses are randomly replaced due to privacy issues, and
port numbers are also likely to be chosen randomly.

Although we agree that nominal features do not carry
information for suspicious activity detection, we believe that
the usage of numerical and categorical features can be im-
proved. First, in order to effectively exploit the information of
categorical features, we apply feature embedding to categorical
features. For numerical features, we have found that most of
these values are concentrated in compact intervals with a small
portion of outliers. Therefore, rather than using raw values, we
apply the robust scalers to numerical features. Finally, we also
represent numerical values into categorical features (i.e., high,
medium, and low) and concatenate them to feature vectors.
We have applied the proposed method to the normal/attack
classification and the unsupervised learning of anomaly detec-
tion, showing notable improvements on Kyoto Honeypot [5],
UNSW-NB15 [6], and CICIDS-2018 [7] datasets.

The rest of this paper is organized as follows. Section II
briefly reviews the related works about various deep learning
methods in network intrusion detection and explains network
intrusion datasets. In Section III, we present the details of
our feature representation methods. In Section IV, we evaluate
our methods on three public datasets and discuss the results.
Finally, we conclude this paper in Section V.

II. RELATED WORK

Although numerous methods have been proposed to address
the network intrusion detection problem, most of them focused
on network architectures and training methods. In this section,
we first review deep learning based methods and present the
characteristics of public datasets.

A. Deep Learning Methods in Network Intrusion Detection

The network intrusion detection task is a classification
problem that determines whether a given session corresponds
to normal (negative samples) or attack (anomaly or positive
samples) behavior. As deep learning methods have shown
the state of the art performance in many tasks such as
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image classification, speech recognition, machine translation,
many researchers also attempted to apply deep learning to
the network intrusion detection problem. Specifically, deep
learning structures like FCN [8], [9], CNN [10], [11], RNN
[12], and long short-term memory (LSTM) [13], [14] were
adopted for the network intrusion detection.

Also, autoencoder (AE) and generative adversarial network
(GAN) were adopted in [15]–[17], and techniques like transfer
learning were explored in [18], [19]. Even though there have
been a variety of attempts, the researchers basically focused on
the adoption of existing network architectures for the problem,
not on the feature representation.

B. Network Intrusion Dataset

The network intrusion detection problem has a long his-
tory, and numerous datasets have been proposed for decades.
Although old datasets like KDD CUP 99 and NSL-KDD
[20] are still available, we believe they have limitations in
reflecting the characteristics of modern network traffic and
attacks. Therefore, we choose recent datasets as our targets:
Kyoto Honeypot [5], UNSW-NB15 [6], and CICIDS-2018 [7].

The Kyoto Honeypot [5] dataset is built with actual network
traffic data and has a total of 9.35 million session data, in
which 46.49% is attack data. The Kyoto Honeypot dataset
does not provide the type of attacks. The number of features
for each session is 24, and we have to detect network intrusion
from the feature vector. There are 14 numerical features, two
categorical features, one label, three label-related features, and
4 IP address and port number features. In our experiments,
we use numerical features, categorical features, and a label.
Among a huge number of session data, we randomly select
100,000 samples for training and 20,000 samples for testing.
Normal and attack ratio of our training and testing set is set
to 50:50.

The UNSW-NB15 [6] is a synthetic dataset that includes
Fuzzers, Analysis, Backdoors, DoS, Exploits, Generic, Re-
connaissance, Shellcode, and Worms attacks. It consists of
2.54 million session data, where 12.65% is attack data. The
number of features is 49. There are 38 numerical features, five
categorical features, two labels, and four IP address/port num-
ber features. In our experiments, we use numerical features,
categorical features, and labels. Instead of using the entire
set, we use the training and testing set provided by [6]: The
training set includes 175,341 samples, and the test set includes
82,332 samples. The normal and attack ratio of the training
set is 32:68, and the ratio in the test is 45:55.

The CICIDS-2018 [7] is also a synthetic dataset that in-
cludes Bruteforce, Dos, Web, Infiltration, Botnet, DDoS, and
PortScan attacks. It consists of 9.33 million session data,
where 23.17% is attack data. Since CICIDS-2018 provides
raw traffic data, we use Argus to extract 21 features. Extracted
features are listed in Table I. We randomly select 100,000
samples for training and 20,000 samples for test. The normal
and attack ratio of our training and test set is 50:50.

TABLE I: Extracted features from CICIDS-2018 using Argus.

Feature name Type # of categories
proto Categorical 10
dur Numerical -

spkts Numerical -
dpkts Numerical -
sbytes Numerical -
dbytes Numerical -

sttl Numerical -
dttl Numerical -

sload Numerical -
dload Numerical -
sloss Numerical -
dloss Numerical -
swin Numerical -
stcpb Numerical -
dtcpb Numerical -
dwin Numerical -
tcprtt Numerical -

synack Numerical -
ackdat Numerical -
smean Numerical -
dmean Numerical -

III. PROPOSED METHOD

In this section, we present our feature representation meth-
ods for the network intrusion detection. Our methods are inde-
pendent of neural network structures, and we apply our method
to three popular network architectures in the experimental
section.

A. Categorical Feature Embedding

When categorical features are used in the form of one-
hot vectors, the dimension of the neural network inputs gets
high, and it is likely to introduce difficulties in training.
Actually, researchers usually focused on numerical features
and discarded categorical features in the literature.

In order to exploit categorical features, we represent categor-
ical features in an effective form. To be precise, similar to [21],
we insert an embedding layer (embedding matrix) to convert
a one-hot vector to the input of neural networks as shown in
Fig. 1-(a). For each categorical feature, the dimension of the
embedding vector (edim) is determined by

edim = round (#(category)α) (1)

where #(category) denotes the number of categories for each
categorical feature, α denotes a parameter, and round(·) de-
notes a rounding function. We set α to 0.25 in our experiments
according to [22]. These embedding tables are updated during
network training. Unlike network parameters that reflect the
relationship of multiple features, the embedding tables are
affected only by a single feature. In autoencoder training
[15], the inverse process of embedding is required, and it is
illustrated in Fig. 1-(b). As shown, through matrix multipli-
cation and softmax(·), the embedding vector is restored to
categorical representation.
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(a) One-hot to numerical conversion (b) Numerical to one-hot conversion

Fig. 1: Categorical feature embedding structure.

B. Robust Scaler
Since diverse dynamic ranges can result in imbalanced gra-

dients, a proper normalization scheme is essential for effective
training. We have found that most numerical features fall in
compact regions with a small number of outliers. Therefore,
the commonly used minmax scaler, which linearly maps the
max value to 1 and the min value to 0, is not suitable. Rather,
we use a robust scaler, that maps the top l% value to 1 and
bottom l% value to 0, reducing the effects of outliers:

vnorm =
v

vtop l% − vbottom l%
(2)

We set l to 0.5 in this paper.

C. Categorical Features from Numerical Features
Deep learning models achieve generalization power by

learning features from data, which have been a very difficult
task with ad-hoc manners. On the other hand, deep learning
models are known for having difficulties in discovering and
exploiting simple logical relations, e.g., AND. To alleviate this
problem, researchers add wide features to memorize low-level
feature interactions along with deep features [23].

We analyze network data and find out that network data
features also have simple relations between them and cor-
responding labels: Normal and attack samples are clustered
as shown in Fig. 2, and their groups can be described with
simple logical relations (e.g., small “ct dst ltm” and small
“ct src dport ltm” → normal). In order to exploit these
properties, we apply the categorization to numerical features:
After applying the robust scaler described in Section III.B,
we partition each normalized feature into k bins according
to its value and treat them as categorical features. Partition
boundaries can be determined in a variety of ways, but we
set boundaries linearly for simplicity. We set k as 3 for our
experiments. These newly generated categorical features are
concatenated to original categorical features and embedded
just like original categorical features in Section III.A.

IV. EXPERIMENTAL RESULTS

For the evaluation of the proposed method, we apply our
method to two tasks. One is the supervised learning task that

determines whether a given session data is a normal class or
an attack class. The other is the anomaly detection task, which
learns anomaly detection rules only from normal data.

A. Network Structures

For the supervised learning task, we first evaluate our
method on FCN. The FCN consists of 3 hidden layers with
256, 128, 64 nodes and uses ReLU as an activation function.
We use the cross-entropy as a loss function. For the baseline,
we only use numerical features. Then, the proposed methods
are incrementally applied. Categorical features (additional
categorical features as well as original categorical features) are
incorporated through embedding, and this increases the input
dimensionality. However, due to the embedding, the increase
of dimensionality is moderate.

Inspired by the wide and deep network in the recommenda-
tion system [23], we also apply the proposed method to this
new architecture. Wide-deep networks use one-hot categorical
features and cross-product-transformed categorical features,
where these transformed categorical features are generated
by applying AND operations to categorical features [23]. As
discussed in Section III-C, network data show simple relations
between features and labels. Therefore, we can benefit from
both memorization and generalization with the wide and deep
structure. Our baseline contains categorical feature embedding
and two steps of the proposed method are applied, i.e., robust
scaler and additional categorical features.

For the anomaly detection task, we evaluate our methods
on a memory-guided autoencoder network from [24]. This
structure attaches memory modules to the autoencoder struc-
ture in order to capture various normal features by clustering
them into multiple points. Since [24] deals with image and
video data, we change the network structure for the network
anomaly detection. Unlike images or videos that usually show
abnormalities in sub-regions, network data features should
be considered as a whole. Therefore, the number of queries
in our modified network structure is fixed to one. Encoder
and decoder are consist of 4 hidden layers with 128, 64,
32, 16 nodes and use ReLU as an activation function. We
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Fig. 2: Histograms and scatter plots of selected numerical features in UNSW-NB15 dataset. We observe that normal and attack
samples are clustered.

use reconstruction loss, feature compactness loss, and feature
separateness loss in [24].

B. Evaluation Metrics

In network intrusion detection, commonly used metrics
are accuracy, precision, recall, F1-score, and false alarm rate
(FAR). These metrics are defined as

Accuracy =
TP + TN

TP + TN + FP + FN
, (3)

Precision =
TP

TP + FP
, (4)

Recall =
TP

TP + FN
, (5)

F1-score =
2 · Precision ·Recall
Precision+Recall

, (6)

and
FAR =

FP

FP + TN
, (7)

where TP , TN , FP , and FN denote true positive, true nega-
tive, false positive, and false negative, respectively. There is a
trade-off between recall and FAR, depending on the threshold
determining normal or attack. Also, unlike the experimental
setting where the normal and attack samples are almost 50:50,
the ratio of normal samples is often dominant in the real-
world situation. In this case, the values of the above metrics
vary according to the ratio of normal and attack samples.
Therefore we choose the area under the receiver operating
characteristic (AUROC), which is not affected by thresholds or
normal and attack samples ratio, as the main metric to evaluate
the performance of target networks. The receiver operating
characteristic (ROC) curve, which has FAR in the horizontal
axis and recall in the vertical axis, is obtained by changing

the threshold, and AUROC can be calculated by measuring
the area under the ROC curve.

We use the anomaly score to evaluate the performance of
anomaly detection, which includes reconstruction loss, feature
compactness loss, and feature separateness loss. Unlike super-
vised intrusion classification problems, we need to determine
the threshold suitable for the situation. Therefore, accuracy,
precision, recall, f1-score, and FAR are not evaluated; they
vary depending on the threshold. Instead, we use AUROC for
the anomaly detection task.

C. Evaluation

We compare the performance of the proposed method with
the baselines. Experimental results for FCN, wide and deep
network, and memory-guided network are summarized in
Tables II, III, and IV, respectively. As shown, in most cases,
using all of our proposed methods yields the best performance.
Note that the wide and deep network uses categorical feature
embedding for the deep network part [23].

CICIDS-2018 dataset is relatively easier than the other two
sets, and thus all metrics are almost saturated in the case of
FCN. The wide-and-deep network performs worse than the
FCN due to its complex structure, and the improvement from
the baseline is relatively small. In the case of the memory-
guided network, using additional categorical features from
numerical features gives a slightly lower performance on
UNSW-NB15 and CICIDS-2018 datasets. We believe that the
memory-guided network uses the reconstruction loss, which
needs to reconstruct original inputs, and additional features
lead to a performance drop. Nevertheless, the performance
drop is small, and our method still outperforms the origi-
nal networks. Finally, we would like to emphasize that the
proposed method outperforms all baselines on Kyoto Honey-
pot [5], which consists of real data.
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TABLE II: FCN results on Kyoto Honeypot, UNSW-NB15, and CICIDS-2018 dataset.

Accuracy Precision Recall F1-score FAR AUROC
Kyoto Honeypot FCN 0.8205 0.8064 0.8433 0.8245 0.2024 0.8819

+ Robust scaler 0.8687 0.8376 0.9147 0.8745 0.1774 0.9437
+ Categorical feature embedding 0.8758 0.8478 0.9159 0.8805 0.1644 0.9536
+ Additional categorical features

from numerical features 0.8870 0.8694 0.9108 0.8896 0.1369 0.9544

UNSW-NB15 FCN 0.8507 0.7999 0.9720 0.8776 0.2979 0.9596
+ Robust scaler 0.8596 0.8158 0.9622 0.8830 0.2662 0.9650
+ Categorical feature embedding 0.8733 0.8306 0.9670 0.8936 0.2416 0.9758
+ Additional categorical features

from numerical features 0.8896 0.8492 0.9721 0.9065 0.2115 0.9776

CICIDS-2018 FCN 0.9955 0.9910 1.0000 0.9955 0.0091 0.9999
+ Robust scaler 0.9977 0.9959 0.9994 0.9977 0.0041 1.0000
+ Categorical feature embedding 0.9982 0.9963 1.0000 0.9982 0.0037 1.0000
+ Additional categorical features

from numerical features 0.9992 0.9986 0.9997 0.9992 0.0014 1.0000

TABLE III: Wide and deep results on Kyoto Honeypot, UNSW-NB15, and CICIDS-2018 dataset.

Accuracy Precision Recall F1-score FAR AUROC

Kyoto Honeypot Wide and deep
(including categorical feature embedding) 0.8569 0.8604 0.8521 0.8562 0.1382 0.9176

+ Robust scaler 0.8853 0.8686 0.9080 0.8878 0.1374 0.9544
+ Additional categorical features

from numerical features 0.8910 0.8818 0.9030 0.8923 0.1210 0.9556

UNSW-NB15 Wide and deep
(including categorical feature embedding) 0.8649 0.8188 0.9691 0.8876 0.2627 0.9775

+ Robust scaler 0.8783 0.8336 0.9731 0.8980 0.2379 0.9796
+ Additional categorical features

from numerical features 0.8822 0.8356 0.9786 0.9015 0.2358 0.9799

CICIDS-2018 Wide and deep
(including categorical feature embedding) 0.9438 0.9761 0.9107 0.9423 0.0226 0.9676

+ Robust scaler 0.9457 0.9786 0.9121 0.9442 0.0202 0.9716
+ Additional categorical features

from numerical features 0.9453 0.9773 0.9125 0.9438 0.0215 0.9688

TABLE IV: Memory guided network results on Kyoto Honeypot, UNSW-NB15, and CICIDS-2018 dataset.

AUROC
Kyoto Honeypot Memory guided network 0.8129

+ Robust scaler 0.8301
+ Categorical feature embedding 0.8730
+ Additional categorical features from numerical features 0.8790

UNSW-NB15 Memory guided network 0.8696
+ Robust scaler 0.8819
+ Categorical feature embedding 0.9148
+ Additional categorical features from numerical features 0.9125

CICIDS-2018 Memory guided network 0.9698
+ Robust scaler 0.9723
+ Categorical feature embedding 0.9803
+ Additional categorical features from numerical features 0.9761

V. CONCLUSIONS

In this paper, we have proposed new feature representation
methods for network intrusion and anomaly detection using
neural networks. By adding a categorical feature embedding
layer, representing numerical features categorically, and using
a robust scaler, we have improved intrusion detection rates on
supervised learning and anomaly detection. Unlike previous

work, the proposed method focuses on feature representation
and our methods can be applied to a range of deep learning
methods.
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