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Abstract—The task of image captioning aims to automatically
generate descriptive sentences for a given image. Most existing
works use recurrent neural network as language decoder. In this
paper, we use a transformer structure to generate descriptive
captions. When applied in the task of image captioning, the
transformer network exists two problems. The first is the dis-
appearance of the query vector information in stacking network.
The second is the lacking of spatial information between objects
in the decoding process. To solve these problems, we propose an
improved Transformer with IoU Position encoding model, i.e.,
TIP. We improve the transformer from two aspects. First, we pro-
pose an intra-modal attention mechanism to alleviate the problem
of vanishing query vectors. Second, we propose an Intersection-
over-Union (IoU) spatial position encoding method to enhance
the semantic information of images. Extensive experiments on
MS-COCO datasets demonstrate the effectiveness of our model.

I. INTRODUCTION

Image captioning [1], [2] is a challenging task, which
aims to describe image content in language sentences. It
involves two different fields: computer vision and natural
language processing. Image captioning not only needs to
identify the objects in the image and the relationship between
the objects, but also needs to describe them in coherent
language sentences. Inspired by machine translation [3], most
advanced models adopt the encoder-decoder framework, which
use convolutional neural networks(CNN) [4] to extract image
feature information, recurrent neural networks (RNN) [2] to
generate captions.

To enable the model to dynamically focus on different
regions of the image, Xu et al. [5] add an attention module
to the encoder-decoder framework. Their method focuses on
visual information when generating each word, but it needs to
pay more attention to non-visual information when generating
non-visual words. In order to solve this problem, Lu et al. [6]
propose an adaptive attention mechanism, which can make
the model pay attention to visual or non-visual information.
Anderson et al. [4] propose a combined top-down and bottom-
up attention model approach and apply it to image captioning.
Bottom-up attention module is used to extract the region of
interest in the image and obtain the feature of the object. The
advantage of this method is that we can set a threshold to
select the number of regions of interest. To enrich the features
of the image, You et al. [7] propose to use a target detector to
detect all objects, and combine the objects’ attributes with the
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features of the image as the input of the decoder. Simao et al.
[8] propose the object relation model. Their model encodes
position and relationships between detected objects in images.
Existing approaches generate sentences with low diversity and
do not consider the content of interest. Chen et al. [9] propose
to use scene graphs to generate image captions in a fine-
grained way.

The aforementioned models use RNN structure as decoder.
However, the sequential structure of RNN leads to limited
long-term memory capacity in the decoding process. Re-
cently, the transformer structure has verified its effectiveness
in sequential tasks, and self-attention networks have been
widely used in multi-modal tasks. Zhang et al. [10] introduce
an adaptive attention mechanism based on the transformer,
which makes decoder to determine where and when to use
image region information. To enable the model use multi-
level features, Marcella et al. [11] introduce a meshed-memory
transformer. Their model learns a multi-level representation
of the relationships between image regions,and uses a mesh-
like connectivity at decoding stage to exploit low-level and
high-level features. In order to solve the problem that the
embedding of a word only uses itself, Yu et al. [12] propose
a transformer model based on knowledge graph. This model
can use not only the word itself, but also the information of
the word’s neighbors when decoding. The typical self-attention
has difficulty in solving the problem of semantic gap between
vision and language. Li et al. [13] introduce an entangled
transformer structure. The entangled attention module enables
the model to solve the problem of semantic gap.

Although the model structure based on self-attention net-
works has achieved state-of-the-art performance in image
captioning, it still has two problems that need to be solved.
First, the query vector in the self-attention mechanism is prone
to cause the query vector to disappear in the stacked network.
In the network structure, the query vector of the current layer is
obtained from the output of the previous layer. It is difficult for
the query vector of the next layer to use the query information
of the current layer. Second, the image captioning models
ignore the spatial information between objects in the image.
The above two reasons result in generated sentences fail to
accurately describe the image’s content.

In this paper, we propose an improved Transformer with IoU
Position encoding model, called TIP, based on the classical
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transformer. Specifically, in order to solve the problem of the
disappearance of the query vector in the stacked network, we
designed an intra-modal self-attention mechanism. Meanwhile,
in order to solve the problem of lack spatial information
between objects when decoding, we propose a spatial position
encoding method based on IoU. Since IoU captures the rela-
tionships between objects, the generated captions can clearly
express the semantic information of the images.

Our contributions are summarized as follows. 1) We propose
an intra-modal attention module that can alleviate the problem
of vanishing query vectors when the network is propagating
forward. 2) We propose a spatial position encoding method
based on IoU which enriches image features and enhances
the model’s understanding of the spatial information between
objects. 3) We conduct experiments to compare image caption-
ing models, and verify the effectiveness of our proposed TIP
model through quantitative analysis and qualitative analysis.

II. RELATED WORKS

In recent years, inspired by the encoder-decoder framework
of machine translation task [14], a series of deep learning
image captioning models have been proposed. The Neural
Image Captioing (NIC) model [2] uses the convolutional
neural network to extract the feature information of the image,
and uses long-short term memory (LSTM) to translate the
features into the corresponding sentence. However, NIC model
uses image features only in the initial moment. To enhance the
guidance of image features for generating sentences, Jia et al.
[15] propose to input the image features at each moment of
decoding.

In order to better utilize the features of the image, Karpathy
et al. [16] propose to extract the features of different regions
of the image using R-CNN network [17]. The model uses the
feature information of different regions to generate the corre-
sponding sentences. To enable the model to dynamically focus
on different regions in the image at the moment of decoding,
Xu et al. [5] propose the attention mechanism. The proposed
attention module effectively improves the performance of the
image captioning model. However,this attention mechanism
only focus on different visual information and ignore model
language information. Lu et al. [6] propose an adaptive atten-
tion mechanism. The adaptive attention mechanism can decide
whether to focus more on visual or language information at
the current moment. All above models use an encoder based
on RNN structure. However, the inherent sequential structure
makes the model has limited long-time memory capability.

In order to alleviate the long-time dependency problem,
we adopt the transformer [18] structure as the decoder. Since
the network is stacked by multiple layers, it is difficult to
propagate the query information to the next layer during the
network forward propagation. To make our TIP model better
applicable to image captioning, we propose an intra-modal
attention module. Moreover, the spatial information of the
image should be used along with the feature information in the
decoding process. Hu et al. [19] propose to use the coordinates
and size of the objects as auxiliary information. However, they
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Fig. 1. The framework of our proposed TIP model. The TIP model is
comprised of three primary components: image encoder, IoU position module,
and caption decoder.

only utilize the coordinate information of the image and do
not utilize the relationship between the objects in the image.
In order to make our TIP model better utilize the spatial
relationship of objects, we propose an IoU spatial position
encoding module.

III. METHOD

In this section, we first describe the structure of our pro-
posed TIP model. Then we introduce the intra-modal attention
module. Finally, we introduce the spatial information encoding
module.

A. Transformer model for image captioning

The overall model structure is shown in Fig. 1. We adopt
the encoder-decoder framework. Here, Fast R-CNN is used as
the encoder which encodes the image into visual features. The
decoder is mainly used for the generation of word sequences.
Based on the extracted visual features, the corresponding cap-
tions are generated. The decoder uses a self-attention network,
which can solve the problem of long-term dependence due to
the sequential structure. To be brief, the decoder consists of
identical blocks. Each block includes multi-head self attention
and feed-forward network and each block employs a residual
connection [20], followed by layer normalization [21].

B. Intra-modal attention

We propose an intra-modal attention module to alleviate
the problem of vanishing query vectors. It enables the model
to better preserve image and text information. Intra-modal
attention mechanism is shown in Fig. 2. We first calculate the
similarity using the query vector and the key vector to get the
weight values. The weight is transformed into a value between
0 and 1 by a softmax function. The calculation formula is as
follows,

;5 = fsim(ai, kj) (D
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Multiply

Fig. 2. The structure of intra-modal attention.

where g; denotes the query vector of the ith word, and k;
denotes the key vector of jth word, and a;; denotes the
similarity result of the ith and jth words.
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The query vector is concatenated with the value vector, and
the V. vector is obtained after the fully connected layer. The
calculation formula is as follows,

Vo= Weq+ W +b, 3)

2

@j =

where W and Wy are the parameters to be learned. The
parameter b. represents the bias. The vector g is obtained from
the concatenation by a sigmoid activation function, i.e.,

g=o0(Wiqg+Wjv+bs) 4)

The parameters W7 and W are learned and the symbol o
indicates the sigmoid activation function. The by parameter
represents the bias. And the role of the gate is to selectively
remember the information of the V, vector as follows,

=90V, o)

where the symbol © represents the element-wise product. The
attended V' is calculated as follows,

V=3, ;. (6)

Note that the intra-modal attention module adopts a different
structure from the original self-attention. To preserve the infor-
mation within the query vector, we use a concatenation method
to fuse the query vector with the value vector. Meanwhile, we
use the gate mechanism to remove useless information.

C. Position encoding

We enhance the visual information by adding spatial fea-
tures of objects. The region proposal network extracts the
information of each object. The coordination of the ith box can
be represented by {(zi1,v:i1), (€i2, yi2)}. During decoding,
we hope that feature information can play a key role and
spatial information can guide sentence generation. The fusion
of spatial and visual features makes the decoder understand
the image content better. However, the data distribution of the
feature and the box coordinate information is not consistent.

In order to better fuse the features of the image and the
spatial information of objects, we try several spatial location
encoding methods. We compare the direct use of coordinate
information with use IoU of box with other boxes. Finally,
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TABLE I
PERFORMANCE COMPARISON USING CROSS-ENTROPY.

Model B-1 B4 M R C S
Review Net [29] 72.1 313 256 533 965 -
Adaptive [6] 742 332 266 - 108.5 -
PG-BCMR [30] 754 332 257 550 1013 -
SCST [31] - 300 259 534 994 -
LSTM-A [32] 754 352 269 558 108.8  20.0
Up-Down [4] 7712 362 270 564 1135 203
RF-Net [33] 76.4 358 274 568 1125 205
TKG [12] 756 343 277 563 1128 209
TIP 755 357 279 565 1139 2038
TIP (w/o intra) 757 349 277 561 1123 209

the following approach of visual and spatial feature fusion
achieved the best results. We first compute the IoU between
each object bounding box and other object bounding boxes in
the image. Then we use a fully connected layer to map it to a
dimension consistent with the object feature map. The output
is summed with the visual features. We use the obtained result
as the input of the decoder.

IV. EXPERIMENTAL SETTINGS
A. Datasets and metrics

To verify the effectiveness of our proposed TIP model,
we conduct experiments on the MS-COCO [22] dataset. The
MS-COCO dataset contains 82,783 training images, 40,504
validation images and 40,775 test images. To better compare
with other baseline methods, we use the same dataset division
method as in [2]. The offline dataset contains 113,287 images
with five annotated sentences for each image. Both the vali-
dation set and the testing set contain 5000 different images.

We use CIDEr (Consensud-based Image Description Eval-
uation) [23], BLEU (Bi-Lingual Evaluation Understudy) [24],
METEOR (Metric for Evaluation of Translation withe Explicit
Ordering) [25], ROUGE (Recall-Oriented Understudy for Gist-
ing Evaluation) [26] and SPICE (Semantic propositional image
caption evaluation) [27] to evaluate our proposed method.

B. Implementation details

The number of regions of interest detected by the region
detector is set to 36. We set the dimension of the region
features to 2048. The dimension of the word embedding vector
is set to 512. The number of encoder and decoder layers of
the network structure is set to 6, and the number of multi-head
attention mechanisms is set to 8. We set the maximum length
of the sentence to 16. We set the batch size in the training
process to 10. We update the parameters of the network using
the Adam method [28]. Adam’s momentum and weight decay
are 0.8 and 0.999, respectively. The initial learning rate of
model is set to 4 x 10™4, with 2000 warm-up steps. We train
15 epochs using the cross-entropy loss.

V. RESULTS AND ANALYSIS

A. Result Comparison

Table 1 shows the metric scores of different models. TIP
achieves the highest scores in the CIDEr and METEOR.
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TABLE I
PERFORMANCE COMPARISON USING REINFORCEMENT LEARNING.
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TABLE III
PERFORMANCE COMPARISON ON SPATIAL ENCODING METHODS.

Model Bl B4 M R C S Model Bl B2 B3 B4 R S C
LSTM-A [32] 786 355 273 568 1183 208 Baseline 751 588 450 343 558 204 1107
Up-Down [4] 798 363 277 569 1201 214 Coord 751 586 448 341 557 202 1082
RE-Net [33] 791 365 277 573 1219 212 Coord(hw) 748 586 447 340 555 204 1088
ICS [12] 802 380 286 584 1286 221 CoordNorm(hw) 752 58.8 449 342 557 204 1097

ToUc 752 588 449 342 556 205 110.0
TIP 784 379 280 583 1231 218 ToU+ 755 593 456 349 558 207 110.6

TABLE IV

CIDEr calculates weights according to the importance of the
words and measures the similarity of the generated sentences
to the annotated sentences. The CIDEr is also used specifically
to evaluate image captioning. TIP model achieves a high score
in CIDEr, indicating that the model has better performance.
The METEOR evaluation method is highly correlated with
manual evaluation. A high score in this metric indicates that
the generated sentences are more readable. The sentences
generated by TIP model are not the highest in BLEU. BLEU
calculates the similarity of annotated sentences to generated
sentences. It does not consider the importance of different
words. Therefore, the low score of this metric indicates that
the generated sentences do not match well with the annotated
sentences. It does not indicate that the sentences are not
readable.

The model without intra-modal attention module decreased
by 1.6 on CIDEr, 0.8 on BLEU-4, and 0.6 on ROUGE. Intra-
modal attention module is designed to alleviate the problem of
disappearing query information. The improvement on metrics
verify the effectiveness of intra-modal attention module.

Reinforcement learning solves the problem of image cap-
tioning exposure bias. As shown in Table II, the TIP model
metric score improve by 9.2 on CIDEr over the model without
reinforcement learning. The model we proposed score higher
on BLEU-1, BLEU-4, METEOR, ROUGE, CIDEr and SPICE
than the LSTM-A, Up-Down, and RF-Net structures.

B. On Spatial Encoding

Table III shows the results of different position encoding
methods. Coord model indicates that we use a fully connected
layer to map coordinates to certain dimensions. The output
is added to the feature information. As we can see from the
Table III that the Coord model decreases by 0.2 on BLEU-2,
BLEU-3, BLEU-4 and SPICE compared with baseline model.
The model decreased by 2.5 on CIDEr. We infer that the
inconsistent distribution of coordinate information and feature
map leads to a decrease in the metrics.

Coord(hw) method adds the length and width of the object
box to the Coord method. In table III, Coord(hw) improves
by 0.6 on CIDEr and 0.2 on SPICE, and decreases on BLEU
instead. This indicates that the length and width information
of the box does not improve the model performance. Coord-
Norm(hw) model adds normalization to the box coordinates
based on Coord(hw). In Table III that the results improve
by 0.4 on BLEU-1, 0.2 on BLEU-2, BLEU-3, BLEU-4 and
ROUGE, and 0.9 on CIDEr compared with the Coord(hw)

PERFORMANCE COMPARISON USING DIFFERENT BEAM SIZE.

Beam  B-1 B-2 B-3 B-4 R S C
1 749 585 441 328 553 203 108.8
2 758 59.7 458 349 559 207 1121
3 75.8 59.8 460 353 559 207 1120
4 75.6 585 458 353 559 206 1108

model. Normalization solves the problem of inconsistent dis-
tribution of coordinates and image features to some extent.
Therefore, CoordNorm(hw) model improves the performance.

The IoUc model first calculates the IoU information be-
tween the current object and other objects in the image. Then
the IoU information is fused with the feature information by
concatenating. Finally we use a fully connected layer to make
the concatenated dimension reduced. In table III, the IoUc
model improves 0.1 on BLEU-1, BLEU-3, and BLEU-4, 0.2
on BLEU-2, 0.3 on SPICE, and 1.8 on CIDEr compared to the
Coord model. The performance of the IoU model achieves an
improvement compared to the Coord model. We infer that the
performance improvement of the model is due to two factors.
The first is that the IoU captures the relationship between
objects in the image. The second is that the spatial information
distribution of the IoUc model is closer to the image feature
information. It enables the image feature information to be
better fused with spatial information.

IoU+ model first calculates IoU between the current object
and other objects in the image. Then the model use a fully
connected layer to keep the IoU position encoding dimension
consistent with the image feature dimension. Finally, the out-
put of the fully connected layer is summed with image feature
values. In table III, ToU+ model improves 0.3 on BLEU-1,
0.5 on BLEU-2, 0.7 on BLEU-3, BLEU-4, 0.2 on ROUGE,
SPICE, and 0.6 on CIDEr compared to the IoUc model. The
IoU+ model uses the spatial information of IoU compared with
the IoUc model. But the only difference is the way of using
features. IoU+ model uses the IoU features mapped by the
fully connected layer and adds them to image features. This
position encoding is more similar to the text encoding of the
transformer. Thus, the position encoding method of IoU+ has
a higher score.

C. On Beam Size

Table IV shows the results of using different sizes of beam
search. When the size of beam search is 1, the search space
for word sampling is too small. A large amount of decoding
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Standard: a couple of boats that are
sitting in the water .

Ours: a boat sitting on top of a lake
next to a shore .

GT1. A boat full of Asian people is sailed
through reeds and bushes .

GT2. A large boat filled with people

Standard: A man riding a snowboard down
a snow covered slope.

Ours: Two people riding snowboards on
snowy slope.

GT1. Two men riding snowboards in snow
down a slope.

GT2. Two people are snowboarding down

a hill fast. navigate through a still lake .
GT3. two men are riding snowboards in a GT3: Around 15 people are on a boat
snow slope. on a river going somewhere .
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Standard: a black cow standing in a field

B: A man riding a skateboard down a

of tall grass. sidewalk.
P: A cow standing in a grassy field next P: A man riding a skateboard next to
to a house. another man.

GT1. Two men on skateboards on the
pavement
GT2.Two young skateboarders are skating

GT1. Two cows grazing on grass in a
field by a house.
GT2. A white faced cow stands in the tall

Fig. 3. Qualitative results of our TIP model.

information is lost and many better sentences are missed.
When the size of beam search is increased to 2 and 3,
the search space of words increases. The metric scores the
highest and the model is more likely to reach the optimal
performance. And when the size of beam search increases
to 4, the model tends to generate shorter sentences. The
high similarity between the generated words and the lack of
diversity lead to some slight decrease in the metrics. Also,
as the beam increases, the memory usage of the algorithm
increases and the speed of generated sentences is slower.

D. On Number of Network Layers

We conduct an experiment on the number of network layers
in the transformer. In Table V, EN means the number of
encoder layers and DN means the number of decoder layers.
We try four combinations of the number of encoders and
decoders. We can see that as the network becomes deeper, the
metric score for the image captioning is higher. It is also found
that the increase in the number of encoder layers does not have
a particularly large improvement in the performance of the
image captioning. The increase in the number of layers in the
decoder part results in larger improvement in the metrics of
BLEU-1, BLEU-2, BLEU-3, BLEU-4, and CIDEr. Therefore,
under the condition that the number of model parameters is
guaranteed, increasing decoder layer numbers can effectively
improve the performance of the model.

E. Qualitative Results and Visualization

We randomly select some images on the dataset for qualita-
tive analysis. The results are shown in Fig. 3. In the first image,
the standard model generates the result of a person skiing
on the snow. Our proposed model can clearly identify there
are two persons in the image. The reason is that the feature
maps of the two persons extracted by the neural network
are relatively similar. Thus, the standard model considers the
similar feature maps as one object and easily forgets the other

grass. near each other.
GT3. a cow stands in the grassy area of GT3. There are two men riding on their
ayard. skateboards.

TABLE V

PERFORMANCE COMPARISON USING DIFFERENT NUMBER OF LAYERS.

EN DN B-1 B-2 B-3 B-4 R S C
6 6 76.0 560 461 352 560 21.0 1129
8 6 758 594 456 347 559 208 1128
6 8 76.1 597 459 349 562 21.1 1129
8 8 76.1 597 458 349 560 212 1132

object. Our IoU position encoding method contains the spatial
information of the object. Since the IoU value of two persons
in the image is 0, it can be clearly identified as two persons.
Therefore, the generated sentences are closer to the annotated
sentences.

Similarly, it can be seen from the third image, which
expresses that a black cow is standing on the grass in front
of the house. The standard model does not recognize the
house. Our model identifies that two objects do not intersect
according to the IoU information of the house and the cow.
Therefore, our model can identify both the cow and the house.
It can be seen that the sentences generated by our TIP model
have richer semantic information. From the above qualitative
analysis, we can see that the model with IoU position encoding
can identify the relationship between objects and generated
sentences are closer to the annotated sentences.

VI. CONCLUSION

In this paper, we propose an improved transformer with IoU
position encoding model, i.e., TIP. By introducing an intra-
modal attention module, the TIP model saves useful query
information to the higher layer. Moreover, We propose an loU
position encoding method that fuses visual features and spatial
features. Finally, we conduct extensive experiments with qual-
itative and quantitative analysis to verify the effectiveness of
the intra-modal attention module and IoU position encoding
method.
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