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Abstract—A novel dictionary dividing scheme for online non-
linear estimation algorithms with multiscale Gaussians is pro-
posed to perform a projection in an appropriate reproducing
kernel Hilbert space. The proposed dictionary dividing strategy
mitigates the inequivalence of the norm of multiscale Gaussians,
which leads to degradations of adaptation speed for certain
Gaussians. Based on a Hilbertian projection with the dictionary
dividing strategy, a fast nonlinear estimation algorithm, which
adapts scales and centers of Gaussians as well as its heights, is
presented. The numerical example shows that using the Hilber-
tian projection with the proposed dictionary dividing scheme
ameliorates the adaptation speed of Gaussian heights.

I. INTRODUCTION

The problem of adaptive estimation of nonlinear functions

appears in various fields of engineering. The accuracy of

estimates depends on the choice of a nonlinear model. Thus,

selecting an appropriate model is an important issue that has

been actively studied in statistical inference. The Gaussian

model is a commonly used model for nonlinear estimation

tasks due to its generalization capabilities. Although Gaussian

model has been succeeded in Gaussian processes [1], radial

basis function (RBF) networks [2], kernel adaptive filtering

[3], and multikernel adaptive filtering [4], their estimation

performance depends heavily on the choice of parameters of

the Gaussian function, such as scales and centers. One way

to obtain such parameters is using batch methods [5–10] for

training data. Unfortunately, this approach is inefficient since

training data may have a different statistical property from

test data, such as covariate shift and/or colored signals. It

is therefore of great importance to develop methods to find

appropriate Gaussian parameters adaptively.

Some related works have been studied in [11–13] to obtain

appropriate parameters (scales and centers) in the Gaussian

model. The methods in [14–16] adapt both the scales and

centers to minimize the instantaneous squared error by iterative

algorithms. However, the nonconvexity of the instantaneous

squared error cost function implies that the solutions derived

by iterative algorithms depend on the initial values of the

parameters. Remarkably, the adaptation speed of the scales

could be unacceptably slow when the initial scale is far from

optimal. To alleviate the sensitivity to the initial conditions,

a reasonable selection strategy for initial Gaussian scales

is proposed in [16], employing multiple initial values for

the Gaussian scales. In [15], a steepening scheme for the

instantaneous squared error function is proposed to enhance

the learning speed.

Let us turn our attention to the update of the Gaus-

sian heights. In the context of kernel adaptive filtering with

Gaussian kernel, updating algorithms for the heights of the

Gaussians have been studied in [4, 17–27]. In [28], kernel

adaptive filtering algorithms are classified into two approaches:

(i) Euclidean-space approach and (ii) a reproducing kernel

Hilbert space (RKHS) approach. It has been shown that the

algorithms classified into the RKHS approach tend to enjoy a

decorrelation property for error surface and thus yield faster

convergence. Convergence speed is quite essential in adap-

tive/online learning, especially in the fields dealing with time-

variant systems such as acoustic signal processing. Although

the methods [15, 16] successfully obtained the appropriate

scales and centers, the update of the Gaussian heights is based

on the Euclidean-space approach, which means that there is

room for improvement in its convergence speed.

To make a RKHS-approach-based algorithm for updating

the estimate with multiscale Gaussians practical, it is key to

select an appropriate RKHS where the projection is performed.

The selection is nontrivial since the Gaussian model may

include multiscale Gaussians with a wide range of scales

due to the adaptations of the Gaussian parameters. In this

paper, a novel dictionary dividing strategy to adapt the heights

of multiscale Gaussians, each in an appropriate RKHS, is

proposed. The idea of the proposed dictionary dividing strat-

egy is to consider multiple RKHSs and allocate Gaussian

functions to each RKHS so that some requirements obtained

from the norm between two Gaussians with different scales are

satisfied. Based on the RKHS projection with the dictionary

dividing strategy, a fast nonlinear estimation algorithm with

the adaptations of Gaussian parameters (scales and centers) is

presented. As revealed by computer experiments, the algorithm

with the proposed dictionary dividing strategy enjoys fast

adaptation speed as well as reasonable adaptation of Gaussian

parameters.

II. PRELIMINARY

1) Problem Settings: Let RL and N be the L-dimensional

Euclidean space and the set of nonnegative integers, respec-

tively. We estimate a nonlinear function ψ : RL → R with

sequentially arriving input signals un ∈ U ⊂ R
L, and its
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noisy output dn := ψ(un)+ νn ∈ R, where n ∈ N is the time

instant, un is assumed an i.i.d. random vector, and νn is an

additive noise. Gaussian function is defined as

g(u; ξ, c) := exp

(

−‖u− c‖2
2ξ

)

, (1)

where ξ > 0 is the scale and c ∈ R
L is the center of the

Gaussian. Here, ‖·‖ denotes the standard Euclidean norm.

The nonlinear function ψ is estimated by a weighted sum

of the r Gaussian functions:

g(·; ξ(j), c(j)), j = 1, · · · , r, (2)

where, ξ(j) > 0 and c(j) ∈ R
L. For the visibility of the paper,

we use the shorthand notation for the Gaussian function:

g(j)(·) := g(·; ξ(j), c(j)). (3)

A. Estimation Model

In this work, we assume any prior knowledge of the target

function ψ is unavailable, and thus appropriate numbers and

the parameters (scales and centers) of Gaussians for reasonable

estimation are also unavailable. To perform estimation with

appropriate number of Gaussians which have appropriate

parameters, the numbers and parameters of Gaussians are

changed in the process of estimation as well as the heights

(coefficients) of Gaussians. Our time-varying model is thus

given by

ϕn(u) :=

rn
∑

j=1

h(j)n g(j)n (u), (4)

with the shorthand notation for the Gaussian functions

g(j)n (·) := g(·; ξ(j)n , c(j)n ). (5)

Here, ξ
(j)
n > 0, c

(j)
n ∈ R

L, and h
(j)
n ∈ R are the scale, center,

and height, respectively, for the j-th Gaussian at time instant

n. The dictionary Dn is defined as the set of rn Gaussian

functions:

Dn := {g(j)n }j∈{1,2,··· ,rn}. (6)

B. Update of Gaussian Heights in RKHS

Update schemes for the Gaussian heights h
(j)
n in the model

(4) have been studied in the field of kernel adaptive filtering

under the use of the Gaussian kernel

κξκ(u,v) := exp

(

−‖u− v‖2
2ξκ

)

, u,v ∈ R
L, (7)

where ξκ > 0 is the scale parameter. In [28], kernel adaptive

filtering algorithms are classified into two classes according

to space where the algorithms are formulated: (i) the space

of coefficient vectors and (ii) a reproducing kernel Hilbert

space (RKHS). It has been shown by simulations and a

theoretical aspect that the RKHS-type algorithms tend to enjoy

the decorrelation property of error surfaces and thus yield

faster convergence than the algorithms formulated in the space

of coefficient vectors [28, 29]. Motivated by this study, the

updating algorithm for the coefficients h
(j)
n in (4) is formulated

in an RKHS.

Let Hξκ be the RKHS induced by the Gaussian kernel (7).

For the RKHS Hξκ , the following fact is known.

Fact 1 ([30]): The Gaussian function g(·; ξ,u), u ∈ R
L

with the scale ξκ
2 < ξ is contained in the RKHS Hξκ .

Under the assumption ξκ
2 < ξ(j), ∀j = 1, · · · , rn, the set

{g(j)n }j∈{1,··· ,rn} spans the dictionary subspace

Mn := span{g(j)n }j∈{1,··· ,rn} (8)

of the RKHS Hξκ .

We define the metric projection onto the nonempty closed

convex set of a real Hilbert space.

Definition 1: Let X be a real Hilbert space equipped with

a norm ‖·‖X . Then, the metric projection of a point x ∈ X
onto a nonempty closed convex set K ⊂ X is defined as

PK(x) := argmin
y∈K

‖x− y‖X . (9)

The proposed updating scheme for the heights h
(j)
n is based on

the projection onto the dictionary subspace Mn. Specifically,

the Gaussian heights are updated in the direction of the

projection PMn
(κξκ(·,un)) in the RKHS Hξκ . Note that

κξκ(·,un) is the normal vector of the zero-instantaneous-error

hyperplane Πn := {f ∈ Hξκ : dn − f(un) = 0}. For more

details about the projection onto the dictionary subspace, see

[22].

III. PROPOSED ALGORITHM

A. Inner Product of Two Gaussians

To compute the projection onto the dictionary subspace

Mn, there are two problems to be addressed:

1) How to compute the inner product between Gaussians

in the RKHS Hξκ (answered in Theorem 1).

2) How to select the RKHS Hξκ where the algorithm is

formulated; i.e., how to select the scale parameter ξκ of

the Gaussian kernel (7) (answered in Scheme 1).

To address the problems, let us start with the following

lemma:

Lemma 1 ([31]): Let C(RL) be the set of differentiable

functions, Lp(R
L), p > 0 be the set of p-th power integrable

functions. Suppose fκ ∈ C(RL) ∩ L1(R
L) : RL → R is a

real-valued positive definite function. Define

H :=







f ∈ L2(R
L) ∩ C(RL) :

f̂
√

f̂κ

∈ L2(R
L)







, (10)

and the inner product can be defined by

〈f1, f2〉H := (2π)−L/2

∫

RL

f̂1(t)f̂2(t)

f̂κ(t)
dt, t ∈ R

L, (11)

where f̂ denotes the Fourier transform of the function f . Then

H is a real Hilbert space with the inner product 〈·, ·〉H and a

reproducing kernel κ(·, ·) := fκ(· − ·).
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Fig. 1. The norm
∥

∥g(j)
∥

∥

Hξκ
with ξ(1) = 100 and ξκ = ξ(2) = 10−3.

The Fourier transform of the Gaussian function is given in

the following lemma.

Lemma 2: The Fourier transform ĝ of the Gaussian function

g is given by

ĝ(t; ξ, c) = ξL/2 exp

(

−ξ ‖t‖
2

2

)

exp
(

−icTt
)

, t ∈ R
L,

(12)

where i :=
√
−1.

Proof: See Appendix A.

The Gaussian kernel (7) can be defined by the Gaussian

function: κξκ(·, ·) := g(·−·; ξκ,0). For the function
ĝ(·;ξ,c)√
ĝ(·;ξκ,0)

,

the following Lemma can be verified.

Lemma 3: Under the assumption ξ > ξκ
2 , it holds that

ĝ(·; ξ, c)
√

ĝ(·; ξκ,0)
∈ L2(R

L). (13)

Proof: See Appendix B.

The following theorem then can be verified by Lemma. 1,

2, and 3.

Theorem 1: In the RKHS Hξκ , the inner product of two

Gaussians g(1) and g(2) with the scales ξ(1), ξ(2) > ξκ
2 is

given by
〈

g(1), g(2)
〉

Hξκ

=

√

ξ(1)ξ(2)

ξκ(ξ(1) + ξ(2) − ξκ)
exp

(

−
∥

∥c(1) − c(2)
∥

∥

2

2(ξ(1) + ξ(2) − ξκ)

)

.

(14)

Proof: See Appendix C.

B. Motivations for Dictionary Dividing

1) Norm of Gaussian Functions: The following result is

immediately available from (14) in Theorem 1.

Corollary 1: For the Gaussian function with the scale ξ >
ξκ
2 , its norm

‖g(·; ξ,u)‖Hξκ
=

ξ
1
2

{ξκ(2ξ − ξκ)} 1
4

(15)

κξ(·,un)

g(2)

g(1)

PMn
(κξ(·,un))

= α(1)g(1) + α(2)g(2)

α(2)g(2)

α(1)g(1)
θ

Mn

Fig. 2. Projection onto the two-dimensional dictionary subspace Mn with
ξ(1) ≫ ξ(2) > ξκ. Due to the large norm

∥

∥g(1)
∥

∥

Hξκ
, the coefficient α(1) ∈

R of the projection has a smaller value than α(2) ∈ R; i.e, α(1) ≪ α(2) .

has the minimum value 1 at ξ = ξκ and is a monotonically

increasing for |ξ − ξκ|.
Figure 1 shows the norm

∥

∥g(j)
∥

∥

Hξκ

with ξ(1) = 100 and

ξκ = ξ(2) = 10−3. Due to the monotonically increasing

property presented in Corollary 1, the norm
∥

∥g(1)
∥

∥

Hξκ

has

a larger value than
∥

∥g(2)
∥

∥

Hξκ

which has the minimum value

1.

2) Projection onto Dictionary Subspace: Figure 2 illus-

trates the projection onto the two-dimensional dictionary sub-

space Mn with the Gaussian scales ξ(1) ≫ ξ(2) > ξκ. Since

ξ(1) ≫ ξ(2), the norm
∥

∥g(1)
∥

∥

Hξκ

is larger than
∥

∥g(2)
∥

∥

Hξκ

(see

Corollary 1). The large norm
∥

∥g(1)
∥

∥

Hξκ

reduces the rate of the

update in the direction of g(1), and a large step size is therefore

required to provide sufficient update rate for g(1). However,

such a large step size causes instability of the algorithm since

the rate of the update in the direction of g(2) is significantly

larger than the rate of g(1). On the other hand, a small step size

that tends to stabilize the algorithm slows down the algorithm

due to the small update rate in the direction of g(1). The slow

growth of Gaussians with large scales, moreover, causes the

large dictionary size since many Gaussians with small scales

are required to reduce the error.

3) Selection of the RKHS Hξκ : As discussed in the previous

subsection, differences of the norms have a negative impact

in terms of learning speed. From the above discussion and

Fact 1, the following desirable properties for the RKHS Hξκ

are obtained:

(a) ξκ
2 < ξ(j), ∀j ∈ {1, · · · , rn} (see Fact 1).

(b) ξ(j), ∀j ∈ {1, · · · , rn} should not be extremely

larger than ξκ.

However, it is unrealistic to select an RKHS Hξκ so that

satisfying the above properties in practical situations, since

the scales may be widely distributed due to the adaptations for

the Gaussian parameters. In this study, we address the above

problem with a novel design scheme for the dictionary, which

will be presented in the next subsection.

C. Dictionary Dividing Strategy

The idea of the proposed design scheme is to consider mul-

tiple RKHSs H
ξ
(1)
κ
,H

ξ
(2)
κ
, · · · ,H

ξ
(Q)
κ

and allocate Gaussian
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...

...

...

Dictionary growing (Sec. III-D1)

Dictionary dividing (Sec. III-C)

Update Gaussian heights

Update Gaussian scales

Update Gaussian centers

Update h(1)
n

Update h(Q)
n

Update ξ
(j)
n , j ∈ J (1,ξ)

n

Update ξ
(j)
n , j ∈ J (Q−1,ξ)

n

Update c
(j)
n , j ∈ J (1,ξ)

n

Update c
(j)
n , j ∈ J (Q,ξ)

n

Parameter updating

Fig. 4. A block diagram of the proposed algorithm.

functions to each RKHS so that the properties presented in

Section III-B3 hold. To realize this idea, the dictionary Dn

is divided into Q subsets D(1),D(2), · · · ,D(Q) on the scales

basis, and the coefficients of Gaussians which are in the q-th

dictionary D(q) are updated in the RKHS H
ξ
(q)
κ

. The proposed

dictionary dividing strategy is given below.

Scheme 1 (Dictionary Dividing Strategy): Set Q scales

ξ
(1)
κ > ξ

(2)
κ > · · · > ξ

(Q)
κ > 0 s.t.

ξ(q)κ

2 > ξ
(q+1)
κ , q =

1, · · · , Q−1. Then the Q ranges R(1), · · · , R(Q) are defined as

R(1) := (
ξ(1)κ

2 ,+∞) and R(q) := (
ξ(q)κ

2 ,
ξ(q−1)
κ

2 ], q = 2, · · · , Q.

The divided dictionaries are defined as D(q)
n := {g(j)n }

j∈J (q)
n

,

where J (q)
n := {j(q,1)n , j

(q,2)
n , · · · , j(q,r

(q)
n )

n }, s.t. ∀ξ(j)n ∈
R(q), j ∈ J (q)

n .

Figure 3 shows the segmentation of the Gaussian scales with

Q = 4.

D. The Proposed Algorithm

Figure 4 shows a block diagram of the proposed algorithm.

The proposed algorithm consists of three blocks: (i) the

dictionary growing block, (ii) the dictionary dividing block,

and (ii) the parameter updating block. In the first block, the

dictionary is initialized to an empty set (r0 := 0), and it grows

under a selection strategy based on the coherence criterion

using the sequentially coming data. In the second block,

dictionary dividing is performed according to Scheme. 1. In

the third block, the parameters (heights, scales, and centers)

are updated in this order. The parameters of the Gaussians in

D(1)
n are updated first. Then, those of the Gaussians in D(2)

n are

updated, and so on. This order comes from the idea of updating

Gaussian functions with large scales preferentially to reduce

the error over a wide range rapidly. For more details about

the updating order of the Gaussian parameters, see [16]. To

prevent the scales from becoming smaller than ξ(q)

2 , the scales

of Gaussians in D(Q)
n are not updated.

Each step will be described below.
1) Dictionary Growing: Under the online setting consid-

ered in this paper, an adequate number of Gaussians and the

range of Gaussian centers are unknown prior to estimation.

The proposed algorithm thus starts the estimation with the

empty dictionary D0 := ∅ and a new Gaussian with the

predefined initial Gaussian scale ξinit > 0 enters to dictionary

based on the coherence criterion [32] to keep the dictionary

within a reasonable size.
2) Parameters Updating:

Selective updating strategy: When g
(j)
n (un) is nearly zero,

the updates of the associated Gaussian parameters may not

largely affect the estimation. To reduce the computational

costs for updating the heights, s
(q,h)
n Gaussians out of r

(q)
n

Gaussians are selected for each dictionary D(q)
n , and then

associated heights are updated. The idea of the selection

strategy is the following: select a few Gaussians {g(j)n }
j∈J (q)

n

that are most relevant to the estimate at the current input un,

where J (q,h)
n := {j(1,q)n , j

(2,q)
n , · · · , j(s

(q,h)
n ,q)

n } ⊂ J (q)
n for the

number s
(q,h)
n (≤ r

(q)
n ) of selected elements at time n. The

same applies to the scales and centers, for which the number of

selected Gaussians is denoted by s
(q,ξ)
n and s

(q,c)
n , respectively.

Update of Gaussian parameters: The Gaussian heights are

updated in the direction of the projection PM(q)
n
(κξ(q) (·,un))

in the RKHS Hξ(q) . Here, M(q)
n is the subspace defined by

M(q)
n := span{g(j)n (·)}

j∈J (q)
n
. (16)

To exclude from the dictionary adaptively

redundant/obsolete Gaussians that make no contribution

to the estimation without causing serious performance

degradations, soft thresholding and dictionary pruning are

performed after the update (see the operator Tλ in Table I).

For the Gaussian scales and centers, gradient update

is performed for the squared error function. At time in-

stant n, the parameters (scales, and centers of rn Gaus-

sians) can be expressed by vectors and a matrix, respec-

tively, as ξ := [ξ(1), ξ(2), · · · , ξ(rn)]T ∈ R
rn
++ and C :=
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TABLE I
THE PROPOSED ALGORITHM.

Initialization: Dn := ∅.
Start nth iteration: Observe un and dn.
1) Dictionary Growing :

If maxj∈{1,··· ,rn} c(ξ
(j)
n , c

(j)
n , ξinit,un) ≤ δ ∈ [0, 1], g

(rn+1)
n (·) enters Dn with (h

(rn+1)
n , ξ

(rn+1)
n , c

(rn+1)
n ):= (0, ξinit,un).

Here, c(ξu,u, ξv ,v) :=

∣

∣

∣

∣

〈g(·;ξu,u),g(·;ξv,v)〉Hξinit
‖g(·;ξu,u)‖

Hξinit
‖g(·;ξv ,v)‖Hξinit

∣

∣

∣

∣

is the coherence.

2) Gaussian heights update :
for q = 1 : Q

(a) Construct J
(q,h)
n = {j

(q,1)
n , · · · , j

(q,s
(q,h)
n )

n } ∈ J
(q)
n s.t. g

(k)
n (un) ≥ g

(j)
n (un), ∀k ∈ J

(q,h)
n and j ∈ J

(q)
n \ J

(q,h)
n .

(b) Update the coefficients by h̃
(q)
n ← h̃

(q)
n − µhα

(q)
n and h

(q)
n ← Tλ

(

ĥ
(q)
n

)

, where α
(q)
n = G

(q)
n

−1
g
(q)
n

with g
(q)
n := [g

(j
(q,1)
n )

n (un), · · · , g
(j

(q,s
(q,h)
n )

n )
n (un)]T ∈ Rs

(q,h)
n and [G

(q)
n ]k,l :=

〈

g
(j

(q,k)
n )

n , g
(j

(q,l)
n )

n

〉

H
ξ
(q)
κ

, k, l ∈ {1, · · · , s
(q,h)
n }.

Here, µh > 0, h̃
(q)
n := [h

(j
(q,1)
n )

n , · · · , h
(j(q,s

(q,h)
n )

n )]T, ĥ
(q)
n :=

{

h̃(q,j), j ∈ J
(q)
n

h(q,j), otherwise.

and Tλ with λ > 0 is the soft thresholding operator

which is given by [Tλ(h)]j :=

{

sgn(h(j))(
∣

∣h(j)
∣

∣− λ),
∣

∣h(j)
∣

∣ ≥ λ

0
∣

∣h(j)
∣

∣ < λ.

Coefficients which are zero and their corresponding Gaussians are eliminated from the dictionary.
end

3) Gaussian scales update :
for q = 1 : Q− 1

(a) Construct J
(q,ξ)
n = {j

(q,1)
n , · · · , j

(q,s
(q,ξ)
n )

n } ∈ J
(q)
n s.t. g

(j)
n (un) ≥ g

(k)
n (un), ∀k ∈ J

(q,ξ)
n and j ∈ J

(q)
n \ J

(q,ξ)
n .

(b) Select the index j ∈ J
(q,ξ)
n s.t. g

(j)
n (un) ≥ g

(k)
n (un), ∀k ∈ J

(q,ξ)
n .

(c) Update ξ
(j)
n by ξ

(j)
n ← ξ

(j)
n exp

(

−µξ
∂Fn

∂ξ(j)
(ξn,Cn)

)

with µξ > 0 and remove the index j from J
(q,ξ)
n .

(d) Repeat (b) and (c) until J
(q,ξ)
n becomes empty set.

end
4) Gaussian centers update :
for q = 1 : Q

(a) Construct J
(q,c)
n = {j

(q,1)
n , · · · , j

(q,s
(q,c)
n )

n } ∈ J
(q)
n s.t. g

(k)
n (un) ≥ g

(j)
n (un), ∀k ∈ J

(q,c)
n and j ∈ J

(q)
n \ J

(q,c)
n .

(b) Select the index j ∈ J
(q,c)
n s.t. g

(j)
n (un) ≥ g

(k)
n (un), ∀k ∈ J

(q,c)
n .

(c) Update c
(j)
n by c

(j)
n ← c

(j)
n − µc

∂Fn

∂c(j)
(ξn,Cn) with µc > 0 and remove the index j from J

(q,c)
n .

(d) Repeat (b) and (c) until J
(q,c)
n becomes empty set.

end
5) Dictionary Dividing : See Section III-C.
end

[c(1) c(2) · · · c(rn)] ∈ R
L×rn . The instantaneous squared

error function is then given by

Fn (ξ,C) :=
1

2
(dn − ϕn(un))

2. (17)

To keep the scale parameters positive, the multiplicative gra-

dient update for the squared error function is employed. The

standard gradient update is performed for the centers.

Tables I summarizes the proposed nonlinear estimation

algorithm.

The computational complexity of the proposed algorithms

at each time instant n ∈ N is generally given in terms of the

dictionary size rn as well as the dimension L of the input space

U . The computational complexity of the proposed algorithm

depends also on the number Q of the divided dictionaries

and the cardinalities

∣

∣

∣
J (q,h)
n

∣

∣

∣
,

∣

∣

∣
J (q,ξ)
n

∣

∣

∣
, and

∣

∣

∣
J (q,c)
n

∣

∣

∣
. Typically,

∣

∣

∣J (q,h)
n

∣

∣

∣,

∣

∣

∣J (q,ξ)
n

∣

∣

∣, and

∣

∣

∣J (q,c)
n

∣

∣

∣ are constructed so that their

cardinalities are less than 3, and thus the computational com-

plexity of the proposed algorithm can be kept reasonably low

even though the dictionary size rn becomes significantly large.

In the next section, we show that the proposed algorithm yields

reasonable estimation performances even though only a few

Gaussian parameters are updated for each divided dictionaries.

IV. SIMULATION RESULTS

We show the efficacy of the proposed nonlinear esti-

mation algorithm for system identification problems of a

toy example. We consider the nonlinear function ψ(u) =
∑3

i=1 h
∗
i exp

(

− |u−c∗i |2
2ξ∗i

)

, which is the weighted sum of three

Gaussian functions with h∗1 = −1, h∗2 = −1, h∗3 = 1,

ξ∗1 = 10−2, ξ∗2 = 5, ξ∗3 = 50, c∗1 = 15, c∗2 = 8, and c∗3 = 10.

The observed signal is generated as dn := ψ(un)+νn, n ∈ N,

where un is the input data of which each element is randomly

generated from a uniform distribution within the region [0, 20]
and νn ∼ N (0, 5.0 × 10−2) is the additive white Gaussian

noise.

To show that the proposed algorithm improves the learning

speed of the algorithm, the performance of the algorithm is
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evaluated and compared with the performance of the algorithm

with the Euclidean projection: i,e, G(q)
n = I, q = 1, · · · , Q

is employed for the update of the Gaussian heights, where

I is the identity matrix. Moreover, to show the efficacy of

the dictionary dividing strategy, the proposed algorithm is

compared with the proposed algorithm without the dictionary

dividing block. Note that, for the algorithm without the dic-

tionary dividing, the learning of the scale ξ(j) stops when

ξ
(j)
n < ξinit. The scales of the Gaussian kernels are ξ

(1)
κ = 101,

ξ
(2)
κ = 100, ξ

(3)
κ = 10−1, and ξ

(4)
κ = 10−2. Initial Gaussian

scales is ξinit = ξ(3). Every time instant n, the proposed

algorithm updates three Gaussian heights, one Gaussian scale,

and one Gaussian center for each divided dictionary D(q)
n ; i.e.,

s
(q,h)
n = 3, s

(q,ξ)
n = 1, and s

(q,c)
n = 1, ∀q ∈ {1, · · · , Q}. For

the algorithm with the Euclidean projection, the numbers of

the updated parameters are selected so that the computational

complexity averaged over the simulation is close to the com-

plexity of the proposed algorithm; s
(q,h)
n = 3, s

(q,ξ)
n = 3, and

s
(q,c)
n = 3, ∀q ∈ {1, · · · , Q}. For the algorithm without the

dictionary dividing, those parameters are selected so that the

numbers of the updated parameters at every iteration are equal

to the proposed algorithm; s
(h)
n = 12, s

(ξ)
n = 4, and s

(c)
n = 4.

The step sizes are selected so that the steady-state errors are

close to each other for all algorithms. The other parameters are

chosen so that the errors are nearly identical to the proposed

algorithm with the dictionary dividing at the steady state. The

results are averaged over 200 runs.

Fig. 5 gives the (a) MSEs and (b) dictionary sizes. The

results show that the proposed algorithm with the dictionary

dividing strategy is superior to the algorithm without the

dictionary dividing and the algorithm with the Euclidean

projection in the sense of both the MSE and the dictionary

size. Fig. 5(a) shows that the learning speed of the algorithm

with the Euclidean projection slows down compared with the

proposed algorithm due to the ellipsoidal error surface (for

more details, see [28]). Moreover, the convergence speed of

the algorithm without dictionary dividing is slower than the

proposed algorithm due to the small update rate of large-scale

Gaussians. The proposed algorithm enjoys faster convergence

thanks to the decorrelation property of the RKHS approach and

the proposed dictionary dividing strategy. Fig. 5(b) shows the

dictionary sizes of the algorithm without dictionary dividing

is larger than other algorithms, since a lot of Gaussians with

small scales are required to reduce the error.

V. CONCLUSIONS

In this paper, we proposed a fast nonlinear estimation

algorithm based on the RKHS projection and the adaptations

of Gaussian parameters. A novel dictionary dividing strategy

was proposed by focusing on the property of the norm of

the Gaussian functions in an RKHS. Thanks to the novel

dictionary dividing strategy, the Gaussian heights are updated

in appropriate RKHSs. As revealed by computer experiments,

the proposed algorithm enjoys fast learning speed thanks to

the RKHS-projection and the dictionary dividing strategy.
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Fig. 5. Experimental results: (a) MSE and (b) dictionary size

APPENDIX

A. Proof of Lemma 2

The Fourier transform ĝ(·; ξ, c) of the Gaussian function

g(·; ξ, c) is given by

ĝ(t) =
1

(2π)L/2

∫

exp
(

−ixTt
)

exp

(

−‖x− c‖2
2ξ

)

dx

=
1

(2π)L/2

L
∏

l=1

exp

(

−c
(l)2

2ξ

)

exp

(

(iξt(l) − c(l))2

2ξ

)

×
∫

exp

(

− (x(l) + (iξt(l) − c(l)))2

2ξ

)

dx(l). (18)
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By changing the variable of the integral in (18) to z(l) :=
x(l)+iξt(l)−c(l)√

2ξ
, we obtain

ĝ(t) =
1

(2π)L/2

L
∏

l=1

exp

(

−c
(l)2

2ξ

)

exp

(

(iξt(l) − c(l))2

2ξ

)

×
∫

exp
(

−z(l)2
)

√

2ξdz(l)

= ξL/2 exp

(

− ξ
2
‖t‖2

)

exp
(

−icTt
)

. (19)

B. Proof of Lemma 3

The squared absolute value of
ĝ(t; ξ, c)
√

ĝ(t; ξκ,0)
is

∣

∣

∣

∣

∣

ĝ(t; ξ, c)
√

ĝ(t; ξκ,0)

∣

∣

∣

∣

∣

2

=









ξL/2 exp
(

− ξ‖t‖2

2

)

√

ξ
L/2
κ exp

(

− ξκ‖t‖2

2

)









2

=
ξL

ξ
L/2
κ

exp

(

‖t‖2
(

ξκ
2

− ξ

))

. (20)

Since 2ξ > ξκ and ξ <∞, the integral of (20) is

∫

∣

∣

∣

∣

∣

ĝ(t; ξ, c)
√

ĝ(t; ξκ,0)

∣

∣

∣

∣

∣

2

dt =
(2π)L/2ξL

(ξκ(2ξ − ξκ))
L/2

, (21)

and it holds that
∫

∣

∣

∣

∣

ĝ(t;ξ,c)√
ĝ(t;ξκ,0)

∣

∣

∣

∣

2

dt <∞.

C. Proof of Theorem 1

By Lemma 1 with Lemma 3, the inner product
〈

g(·; ξ(1), c(1)), g(·; ξ(2), c(2))
〉

Hξκ

is given by

〈

g(·; ξ(1), c(1)), g(·; ξ(2), c(2))
〉

Hξκ

=
1

(2π)L/2

∫

ĝ(t; ξ(1), c(1))ĝ(t; ξ(2), c(2))/ĝ(t; ξκ,0)dt.

(22)

From (19) and (22), we obtain
〈

g(·; ξ(1), c(1)), g(·; ξ(2), c(2))
〉

Hξκ

=

(

ξ(1)ξ(2)

ξκ(ξ(1) + ξ(2) − ξκ)

)L/2

exp

(

−
∥

∥c(1) − c(2)
∥

∥

2

2(ξ(1) + ξ(2) − ξκ)

)

.

(23)
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