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Abstract—This paper considers a personalized learning system
with a large number of users each trying to learn a desired task.
The user learning tasks have similarities as each of the users
have common attributes. However, the learning tasks are each
slightly different as the tasks are personalized to each learning
system. There is also the concern that each learning system may
not receive enough data to learn its desired task. To account
for this a few canonical learners receive all the data from each
personalized learning system. Each personalized learning system
then takes a weighted sum of the canonical learners to realize
their desired task. Here we will consider learning via kernel
methods.

Index Terms—personalized learning, kernel methods, canonical
models

I. INTRODUCTION

Gaining a better understanding of human behavior can help
steer modern societies toward being more sustainable, equi-
table and healthier. In public health, even with vaccinations
with high efficacies, social distancing and wearing face masks
remain effective measures against the spread of coronavirus. In
transportation, if Americans can use more alternative modes
of transportation such as transit and non-motorized modes,
ride share, or simply space out times of day for driving, both
congestion and emissions would be greatly reduced. In power
grids and water systems, if people can conserve energy and
water usage, there will also be substantial savings. All these
require behavioral changes. But behavioral changes are hard.

The prevalence of mobile devices presents new ways for
making behavioral changes on a population scale. This has
resulted in vast amount of data, which are distributed across
devices. The vast data provides us the opportunity to learn
behaviors and the underlying preferences not only in a per-
sonalized way but also collectively, seeking commonalities
across a population. This paper develops a novel approach
of achieving personalized and collective learning at the same
time. More specifically, the study proposes the concept of
a canonical model structure wherein the idea is to divide a
population into L segments and the behaviors and preferences
of each population segment is represented by lth canonical
model structure, or lth canonical learner. This is collective
learning, seeking to identify similarities across individuals
in a population. Another important reason for the collective
learning is that there may not be enough data for each individ-
ual, making the training difficult if learning of a personalized

Fig. 1. Canonical learning model with L canonical learning models and N
personalized processors

system is only limited to the data of one individual. In contrast
the canonical learner receives the aggregated training data
from each personalized system and can learn tasks more
accurately. Personal preference of an individual is then the
weighted sum of those L canonical learners and the weights
for each individual are unique. This constitutes personalized
learning. This personalized and collective learning approach
is represented in Fig. 1; the output of the learning system are
N personalized learning systems, each for an individual in a
population of N . In estimation, these two learning processes
take place iteratively until convergence.

Our study is both different from and related to federated
learning in the current literature [1], [2]. Unlike federated
learning that is motivated from the fact that data across devices
cannot be pulled together for learning either due to limited
bandwidth or privacy concerns, the personalized and collective
learning approach developed in this study permits access to
all data. The two are also different in terms of their respective
outputs: in federated learning, the output is a single global
model learned by integrating all learning agents, while the
outputs from this study are N personalized systems, each of
which is a personalized one for an individual. Structurally, our
approach is related to federated learning in that the canonical
models developed in the study may be viewed as learning
agents in the latter and the integration of all canonical models
can be viewed as the single global model. How to do this
integration is however beyond the scope of this study, which
focuses on the development of a personalized and collection
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approach to obtain N personalized models.
In previous work regression problems were considered using

linear regression models [3] and binary classification problems
were considered using logistic regression models [4]. Here
we will consider binary classification models where we use
kernel methods and optimization techniques based on a mean
squared error cost function [5]. The key difference between
these earlier papers and this paper is using kernel methods
to find the learning model for each of the canonical learning
models. Kernel methods allow for solving nonlinear regression
and classification problems by using nonlinear transformations
and working with kernels in the dual observation space. The
problem is solved in the dual space using the representer
theorem [6] which states that the learned function can be
represented in terms of weighted sums of the evaluated kernels
of the support vectors in the dictionary. Using a mean squared
cost function and equality constraints this amounts to solving
a least squares problem.

This paper gives a framework for personalized learning
using kernel methods. Section II formulates the personalized
learning models. Section III discusses algorithms for solving
the model and Section IV discusses performance issues and
variations to the algorithm. Section V discusses this learning
framework from a broader societal perspective including a
possible transportation application. Finally, Section VI sum-
marizes this paper and discusses further directions. Note that
this paper is a preliminary paper with a more complete per-
formance analysis and application simulations to be presented
at the conference.

II. PERSONALIZED LEARNING MODEL

Here we consider N personalized distributed systems at
the edge. Each of these systems receives a set of unique
data and processes the data to learn a specific task. Here we
will assume a supervised learning task where the ith system
receives the data {(xi(1), yi(1)), . . . (xi(mi), yi(mi))} where
xi(j) ∈ Rn is an input vector and yi(j) ∈ {−1, 1} is
the associated desired output. Let Xi = [xi(1), . . . , xi(mi)]
and Yi = [yi(1), . . . yi(mi)]

T . The output is given by a
mixture model where ŷi(x) =

∑L
l=1 ci,lfl(x) with ci,l being

nonnegative real numbers with
∑L

l=1 ci,l = 1 and ci =
[ci,1, . . . , ci,L]

T . Here, ci,l represents the degree of affinity of
the personalized learner i to the canonical model l. Finally,
Ŷi = [ŷi(xi(1)), . . . , ŷi(xi(mi))]

T is the learned output for
personalized learner i.

Here we consider learning with kernel functions based on
Reproducing Kernel Hilbert Spaces (RKHS), [7]. A key result
is that a function that is learned satisfies the Representer
Theorem fi(x) =

∑
l∈D αi,lk(x, xl)+αi,0, k is a real-valued

kernel from X × X → R on a non-empty set X with a
corresponding RKHS H, D is a dictionary containing the
support vectors, D = |D|, and αi,l ∈ R.

Let αi = [αi,0, αi,1, . . . , αi,D]T be a D + 1 vector of
the kernel weighting coefficients and threshold value with
A = [α1, . . . , αL] denoting the kernel weight matrix and
C = [c1, . . . , cN ] denoting the canonical weight matrix.

For the binary classification problem, we have that yi(x) =
sign((sD•K(x))Aci). Here • is the component by component
multiplication of two row vectors. The • operation can also
represent component by component multiplication of two
column vectors or two matrices. Let xD be the vector of
support vectors in the dictionary and φ() be the transformation
from input space to feature space. Then K(x) = [1, <
φ(x), φ(xD) >] is a D+1 row vector. Similarly sD = [1, yD]
is also a D+1 row vector where yD is a row vector of all the
target outputs of the dictionary of support vectors. We then
have that

Ŷi = sign(((1mi
sD) •Ki)Aci) (1)

where Ki = [K(xi(1)); . . . ;K(xi(mi))] is an mi × (L +
1) matrix and 1mi

is an mi-length vector of 1s. Here we
minimize the following cost function

J(A,C) =
1

2m
||1− Y (m) • Ŷ (m)||2 +R(A,C,X(m)) (2)

where m =
∑N

i=1mi, 1 is a m-length vector of 1s, Y (m) is
an m vector that is a concatenation of the Yis, Ŷ (m) is an m
vector that is a concatenation of the Ŷis, and X(m) is a tensor
of all the Xi matrices. We also have R is a regularization
function.

Unlike Least Squares Support Vector Machine (LS-SVM)
discussed in [5] which can be solved in primal or dual spaces
by finding solutions to least squares problems (unconstrained
convex optimization problems) minimizing equation (2) in-
volves solving a nonconvex optimization problem. In the next
section we discuss an algorithm that can find a solution to this
problem.

Note the solution for this kernel problem is in terms of
the dual observation space. When we use kernels as the basis
functions to learn, the size of the learning problem grows as
the number of observation data. We can limit the size of the
support vector machines by adding support vectors if they
satisfy a certain criterion that the support vectors sufficiently
span the feature space such that linear combinations of support
vectors approximate other input data well. The support vectors
are added according to criterion used. Two popular criterion
are the approximate linear dependence criterion (ALD), [8]
and the coherence criterion (CC), [9]. It is shown that the
number of support vectors in the dictionary for both criterion
converge to a finite value. In this setup since we have multiple
canonical learners we could even specify different kernels for
each different canonical learner. The solution will then involve
using multiple kernels [10]. A popular use of multiple kernels
is using Gaussian kernels (Radial Basis function kernels) with
different widths.

III. ITERATIVE SOLUTION TO OPTIMIZATION PROBLEM

As mentioned above the overall optimization is not convex
as we need to find the weights and threshold values, αi and
the weights associated with the canonical models, ci. To solve
the problem we construct an iterative two step procedure.
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Canonical Learning Model (CLM)
1) initialize A and C.
2) fix C and solve for αi, 1 ≤ i ≤ L.
3) fix A and iteratively update cj , 1 ≤ j ≤ N .
4) stop when certain criterion are met otherwise go to 2)

A. Finding A with C fixed

Referring to equation (1) we let bi = Aci, for 1 ≤ i ≤
N . Assuming the regularization term can also be written in
terms of a quadratic function of bi we can first solve N least
squares problems to find a solution for the bis. Then letting
B = [b1, . . . , bN ] we then solve a least squares problem to
find A that minimizes ||B −AC||2.

B. Finding C with A fixed

With A fixed, the objective function in Equation 2 is a
non-convex optimization problem with non-negative constraint
on the parameter C. The algorithm developed in [3] could
be adopted here. The basic idea is to derive the Lagrangian
function that incorporates the non-negative constraint with the
objective function, and further use the first derivative test and
the complementary condition to derive an updating rule of the
parameter C that will converge to a local optimal solution of
C.

IV. PERFORMANCE OF ALGORITHM

The algorithm to solve for C using updating rule will cost
O(LND). The algorithm to solve for A involves solving N
least squares problems of size D by solving for the matrix
B. Then a least squares problem is solved for A given B and
C. This cost is O(LND3). Together with the complexity for
the algorithm for solving for A, the total complexity would be
O(LND3).

Here we will also examine the performance of the learning
algorithm in terms of convergence of the algorithm and the
probability of error on both trained data and test data. This
will depend on the number of support vectors in the dictio-
nary, D and also the hyperparameters of the kernel methods
used. The N personalized learners could also be described in
terms of a graph structure giving relationships between the
different learning models. This could be represented in the
regularization function as

R(A,C,X(m)) =
1

2
wTLw

where w is the weight vector associated with each personalized
learning model and L is the Laplacian of the graph structure.
The weight vector w depends on the learning model and is a
function of A and C.

V. OTHER CONSIDERATIONS AND TRANSPORTATION
APPLICATION

Human choices are complex because there are a wide variety
of factors that are at play and we, as researchers and analysts,
are only aware of a small fraction of them. As an example, in
deciding which mode of transportation to choose (e.g., driving
vs taking transit), in addition to the usual structural factors

such as travel cost and travel time, a wide range of other
factors could be at play including, for example, weather, prior
experience with transit, one’s knowledge about and attitudes
toward cars’ impacts on the environment, or simply spur
of the moment feelings etc. Furthermore, though there are
multiple decision making theories explaining how different
factors may interact with each other, when they are applied
to explain real-world human choices, the amount of variations
that can be explained are typically quite low, i.e., less than
30% and it is not uncommon for the variations to be less. This
low model fitness is exactly because of the large amount of
heterogeneity that are inherent in human choices. Because of
the complexity involved in human choices, behavioral changes
are challenging to model and predict, creating difficulties
for identifying the right interventions that will most likely
trigger the behavioral changes. This complexity also makes
the use of kernel functions potentially a suitable avenue to
model human choices. Unlike conventional machine learning
models such as the logistic regression in our previous work for
personalized learning [4] that represent subjects as fixed-sized
vectors in a real space, kernels bypass the pre-processing step
of feature vector generation and rather focus on measuring
differences and similarities between subjects. This is done as
each kernel evaluation performs an inner product in the feature
space (which could be infinite dimensional) and provides
relationships between the input entities. Here we use the kernel
matrix (sometimes referred to as the Gram matrix) which gives
information about the different entries (input data vectors and
support vectors in dictionary). In the context of modeling
human choices, this means that one no longer needs to first
figure out in what form a single factor shall be represented and
how factors interact with each other. In summary, using kernels
allows us to capture potentially high degrees of interactions
between different factors that are likely prevalent in human
choices without having to specify them first.

A second advantage of using kernels in the context of
canonical learners is that because it works in the dual space,
the solution becomes essentially solving a set of least squares
problems, which involve finding a set of solutions to a set of
linear equations. The transformation of the problem to solving
least squares problems is significant in a number of application
contexts that were noted in the introduction of this paper,
relating to public health, transportation, power and water
systems. In those contexts, N is large, representing populations
from hundreds of thousands to millions and even more. Let us
take the morning commute as a potential application where in
a large urban region, millions of commuters are simultaneously
making choices such as which mode of transportation to take,
when to depart from home and which route to take if one
is to drive. If we want to learn the choice behavior of each
individual, that means millions of learners are needed and they
need to work at the same time. This could pose tremendous
amount of pressure on computing and thus an efficient solution
to solving a large system becomes very important.

The proposed kernel solutions are also suitable for real-
time applications, during which updates need to be frequently

Proceedings, APSIPA Annual Summit and Conference 2021 14-17 December 2021, Tokyo, Japan

2087



made. This can be done as the kernel methods considered
here used a squared error cost function and online learning
algorithms can be developed using principles of adaptive
filtering [11]. Many real-world applications resemble large-
scale games joined by the majority of a population. As an
example, the daily commute may be viewed as a large-scale
game joined by many. Every commuter has a number of route
choices to choose from and the goal of a single commuter is to
choose the route with the minimum travel time. And yet, the
travel time of each possible route depends on the choices of
all commuters. In other words, in such a system, the choice
made by one individual at time t affects the state of entire
system and consequently others’ choices at time t + 1, and
every one is in the game of minimizing his/her own travel
time. Because of this game-like dynamics, real-time updates
of both the canonical learners (A) and the personalized weights
(C) associated with each individual may be needed.

VI. SUMMARY AND FURTHER DIRECTIONS

This paper discusses personalized learning using a shared
canonical learning structure. Some features of the personalized
learning are that there are substantial similarities between each
of the different learners, however there are some personalized
differences which is accounted for in the canonical model.
Kernel methods using a squared error cost function are used
as they allow for the canonical models to efficiently learn
nonlinear models while solving least squares problems in
the dual observation space. The overall optimization problem
is a nonconvex optimization problem involving a two step
procedure to alternate between updating the kernel weight
matrix A and the canonical weight matrix C.

This is a preliminary paper discussing the personalized
kernel learning framework. Further directions include showing
convergence of the algorithm and simulating the algorithm
on a transportation application. These can then be compared
to previous work which uses a logistic regression model [4].
Work will also proceed to make the learning algorithm more
online so that real-time learning and decision making can be
applied.
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