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Abstract—This paper considers online kernel learning at the
edge. Increasingly, we are seeing more networks consisting of
edge processors and a central processor or coordinator. The edge
processor could be a sensor, mobile phone, cognitive assistant,
and/ or IoT devices. These processors likely have limited power
and communication capabilities, but have enough processing
ability to make intelligent decisions and learn. With the advent of
federated learning, these edge processors do not pass data to the
central processor, but assist in learning by adjusting parameters
of the learning model based on data the edge processor receives
before passing information about the updated model to the
central processor. Here we consider where the edge processors use
kernel methods to perform the learning. The learning algorithms
are online with edge processors adjusting the model parameters
using stochastic gradient algorithms. We establish a framework
for online federated kernel learning.

Index Terms—federated learning, online kernel methods

I. INTRODUCTION

This paper discusses distributed learning combining princi-
ples of federated learning, kernel methods, and adaptive signal
processing, . Here we will assume that we have a number
of edge processors (sensors) that receive data and a central
processor that coordinates activities of the local processors. We
can assume that the local processors are sensors that gather
information. With advances in electronic devices, integrated
circuits, and GPUs, sensors will be tasked to do more than
take measurements and gathering data. They can be made more
autonomous and intelligent, making local decisions and also
assisting in overall learning and decision making. The paper
establishes a framework for online federated kernel learning.

In a classical setup, the local sensors would send received
data to the central processor for learning and decision making.
Communication costs can be quite high if the local sensors
send data to the central processor. Federated learning reduces
communication costs by having local sensors processing and
learning information about their local data eliminating the
need for the data to be sent to the central processor [1], [2],
[3]. If the local sensor has knowledge of the learning model
(weights / parameters of the model) as data is received by
the local sensor, the sensor adjusts the weights of the learning
model and transmits these to the central processor. The central
processor receives the changes in the model and transmit this
information to another sensor that has received data and again
makes updates to the weights of the model and then transmits
the model changes to the central processor. Federated learning
also has many other attributes including privacy issues as local

sensors do not send data to the central processor and federated
learning easily deals with data that is heterogeneous.

Here we will examine real-time learning and decision mak-
ing where data is received by the sensors and updates are
performed online. Specifically, we consider online adaptive
learning with kernel functions based on Reproducing Kernel
Hilbert Spaces (RKHS), [4]. Kernel methods are popular
learning methods where both supervised and unsupervised
learning can be implemented by learning a hyperplane in
feature space. The optimization problem is posed as a convex
optimization problem. Nonlinear methods are learned using
kernel functions and by solving problems in the dual observa-
tion space where the function to be learned is represented by
either a linear sum of kernels evaluated from a dictionary of
support vectors or random features that approximate the kernel
function. An L2 (squared error) cost function can be used
(turns problem into variations of least squares problems) along
with adaptive signal processing methods to develop nonlinear
online distributed adaptive filters. Principles of graph signal
processing can be applied to account for relationships and
correlations between different sensors.

This paper discusses a framework for online federated
learning using kernels. In Section 2 we discuss the online
federated learning model. Section 3 discusses more specific
algorithms and some of the tradeoffs between performance,
communication costs, and algorithm complexity. Section 4
presents some numerical simulation results to compare per-
formance of different algorithms and Section 5 summarizes
the paper and discusses future research directions.

II. ONLINE FEDERATED LEARNING MODELS

Here we learn a function ŷ(x) = αT ξ(x) + α0 where
x ∈ Rn is an input vector, ξ(x) ∈ RD is a basis vector, α is a
vector of weights, and α0 is a threshold value. Here the task to
be learned could be a supervised learning task (e.g. regression,
prediction, classification) or could be an unsupervised learning
task (e.g. principal component analysis, probability density
approximation). For classical kernel methods, ξ(x) = k(x,B)
where k represents a kernel function based on Reproducing
Kernel Hilbert Spaces (RKHS), [4]. B represents the set of
D vectors forming the dictionary that represent the support
vectors.

We also consider where the kernel functions are ap-
proximated by random features drawn from a probability
distribution , [5]. Examples include using Random Fourier
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Features (RFF) where x, z ∈ Rn and the kernel function
k(x, z) = k(x−z) can be written as a difference of terms and
then expressed in terms of an inverse D-dimensional Fourier
Transform

k(x− z) =
∫
p(v) exp(jvT (x− z))dv

where j2 = −1 and p(v) is a probability density function
(pdf). We can then approximate the kernel function using
sinusoids

ξ(x) = (D/2)−
1
2 [cos(vT1 x+ b1), . . . , cos(v

T
Dx+ bD)]T . (1)

where vi, 1 ≤ i ≤ D are drawn at random from p(v) and the
phase bi, 1 ≤ i ≤ D is uniform from 0 to 2π.

The learning algorithms will be online with N edge pro-
cessors receiving and processing data with a central processor
that assists in coordinating learning. A key factor is reducing
communications between different processors as the edge
processors could have bandwidth constraints and they could
be power constrained (e.g. self-powered wireless sensors with
limited power with communication consuming much of the
power). Federated learning is ideal in these situations where
the edge devices process and learn data, [1], [2]. Then there
is no need for the central processor to receive input data.
It coordinates learning by sending information about the
learning model to the edge processor. The edge processor,
when ready updates this information and sends the updated
model information to the central processor and possibly other
edge processors.

1) Learning Framework: Learning algorithms are based
on combining kernel methods and adaptive signal processing.
Here we initially assume there is one task to learn where the
central processor coordinates the overall learning strategy with
edge processing assisting in learning. The basic model can
be described by a Least Squares Support Vector Machine,
[6]. Here we let xi(k) be the value of node i at time k,
X(k) = [x1(k), . . . , xN (k)] be the matrix of all node values at
time k and X(k) be the tensor describing all node values from
time up to time k. Below are some examples of cost functions
for a few supervised and unsupervised learning problems.

Learning Task Cost Function, J()
Regression 1

2m
||Y (m)− Ŷ (m)||2 +R(α,X(m))

Classification 1
2m
||1− Y (m) · Ŷ (m)||2 +R(α,X(m))

1st Principal Component 1
2m
||Ŷ (m)||2 +R(α,X(m))

Prob. Density Estimation 1
2m
||1ρ− Ŷ (m)||2 +R(α,X(m))

Table 1: Supervised and unsupervised learning tasks

For supervised learning Y (m) = [y(1), . . . , y(m)]T is a
vector of target values for times up to m. For all learning
tasks Ŷ (m) is the associated learned estimate of Y (m),
where Ŷ (m) = [ŷ(1), . . . , ŷ(m)]T . Here ŷ(k), 1 ≤ k ≤ m
represents samples drawn from a hyperplane in feature space
that approximates y(k) with

ŷ(k) = αT ξ(z(k)) + α0, z(k) ⊂ X(k)

For simple cases z(k) = xi(k), a sample drawn from one
sensor or z(k) = X(k), a sample drawn from all sensors.
For more complex cases z(k) will depend on both temporal
and spatial samples. For learning problems considered here we
assume that the dimension of z(k) is constant. For all tasks R
represents the regularization function for the learning problem.
Here 1 is a vector of 1s and · is a component by component
multiplication of two vectors.

The optimization is based on [6] and is similar to Gaussian
processes, [7]. For binary classification we have two parallel
hyperplanes. Samples from the positive hyperplane approxi-
mate positive points and samples from the negative hyperplane
approximate negative points. For Principal Component Anal-
ysis (PCA) we obtain the first PCA. Here we assume data is
appropriately normalized in the feature space to be zero mean
where the goal is to maximize the sample variance of the data
from the hyperplane in feature space that projects the data. For
probability density estimation the hyperplane in feature space
approximate points drawn from a probability density function.

The regularization term typically depends on a term regular-
izing a quadratic function of the weights α such as 1

2γ1α
TKα

where K is a matrix of support vector kernels or inner products
of RFF and γ1 is the regularization constant for this cost
function. There could be another term describing relationships
between the nodes spatially (and possibly temporally) which
can use graph signal processing [8]. Connections with a graph
of N nodes can be described by the adjacency matrix A which
give relationships between different nodes and the Laplacian
matrix defined by L = D − A where D is a diagonal matrix
where the diagonals contain the sum of the rows of A. Let α∗

be a vector associated with the nodes (edge processors). Then
an additional regularization term could be 1

2γ2α
∗TLα∗ where

γ2 is the regularization constant for this cost function.
Batch solutions to these learning algorithms involve choos-

ing the basis functions ξ(z(k)) and either use support vectors
for the dictionary or RFF. Once this is done, the solution to the
learning algorithms involve solving a set of linear equations
for α and α0. Here we are interested in online solutions where
edge processors assist with the learning.

Note that the online algorithm will operate in the dual
observation space. If we use kernels as the basis function to
learn, the size of the learning problem grows as the number
of observation data. We can limit the size of the support
vector machines by adding support vectors if they satisfy
a certain criterion that the support vectors sufficiently span
the feature space such that linear combinations of support
vectors approximate other input data well. The support vectors
are added in an online manner according to criterion used.
Two popular criterion are the approximate linear dependence
criterion (ALD), [9] and the coherence criterion (CC), [10]. It
is shown that the number of support vectors in the dictionary
for both criterion converge to a finite value. For RFF we can
pre-specify the basis functions before we start the algorithm.
In recent work, [11], [12] consider using RFF in developing
online kernel algorithms for graph signal processing, however
they do not consider communications involved with distributed
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learning scenarios. Here we develop a general federated learn-
ing framework.

General federated learning with kernels
1) Choose model and basis functions to use (kernels).
2) Central processor initializes model (could be choosing

basis functions (e.g. support vectors or RFF), once basis
functions chosen, then choose weights, α for these basis
functions.

3) Central processor chooses edge processor that has new
data. This can be done synchronously or asynchronously.
Central processor sends update of model to edge proces-
sor (e.g. updated support vectors and weights).

4) Edge processor updates model weights via an adaptive
filter algorithm in dual space (e.g. stochastic gradient
algorithm such as Kernel Least Mean Square (KLMS)
algorithm). Edge processor determines whether to update
dictionary by adding basis vectors (e.g. data it has re-
ceived or RFF)

5) Edge processor sends updated model to central processor
and possibly neighboring processors (if using a diffusion
model).

6) Central processor examines number of iterations and
estimate of cost function. If certain criterion not met go
to 3).

In the next section we discuss learning algorithms depend-
ing on learning task and examine convergence, optimization
performance, computational complexity, and communication
bandwidth. This also includes varying number of basis vectors
in dictionary, tuning hyper-parameters, examining robustness
of algorithms due to impairments such as additive noise, exam-
ining different classes of algorithms ranging from stochastic
gradient type algorithms to more complicated projection based
algorithms [13]. We will see there are obvious tradeoffs
depending on amount of communication bandwidth needed
and desired performance (convergence speed, mean squared
error).

III. ALGORITHM DISCUSSION AND TRADEOFFS

The central processor is tasked to learn one task by col-
lecting information from edge processors. Here we assume
that data comes to each sensor. Let m cumulative data be
received by all sensors and let ŷ(m+1) denote the update of
the iterative algorithm after m data is received. For federated
learning we then have

ŷ(m+ 1) = Aŷ(m) +

N∑
l=1

cl(m)ŷl(m) (2)

where ŷ(m) is the function the central processor is learning.
The term A is a boolean variable that is 1 when we use
asynchronous updates, ŷl(m) are the learning updates at time
m of the lth sensor, there are N sensors, and cl(m) is a
weighting given for each sensor. For federated learning we
will likely have cl(m) = 0 for most l and m as the central
processor does not always update learning parameters when
data is received by a sensor. There will also be cases when

only a certain subset of the sensors are asked to submit their
learning updates with all other sensors having cl(m) = 0.

A key consideration is the updating rules. Assume we use
RFF with the basis function information sent to all sensors
before learning commences. The simplest updating rule is an
asynchronous updating rule (AUR1). When a sensor receives
data the sensor sends an acknowledgement to the central pro-
cessor. The central processor then sends the updated weights
αs to the edge processor. The edge processor then updates
these weights using a stochastic gradient algorithm such as
the Kernel Least Mean Square (KLMS) algorithm. The edge
processor then sends the updated weights to the central pro-
cessor and the central processor waits for an acknowledgement
of the next input data that is received by sensor. In this
case communications savings may be minimal (sending data
versus updates of αs), but more savings can be achieved by
compressing information sent, having edge processors update
only after having received a prescribed amount of data, and
also rejecting data that does not provide sufficient information.
For AUR1, the behavior of the learning algorithm is similar to
the centralized online learning algorithms and conditions for
mean convergence and mean square convergence are easily
established. However, as mentioned above communication
savings may be minimal.

We can also consider AURp where p > 1. Here each
sensor has a counter of how much data it has received since it
last communicated with the central processor and exchanged
information about weight parameters. As each data is received
by the sensor, it updates its learning in an online manner. This
can be by KLMS, a weighted averaging of KLMS, or an affine
projection algorithm. After p data has been received it sends
a query to the central processor and sends the cumulative
updates it has received since the last update. The central
processor updates its model and sends the information to the
sensor. Let sensor l be updated at iteration m, then the updates
can be described by

α(m+ 1) = α(m) + cl(m)α(l)(m) (3)

α(l)(m+ 1) = α(m+ 1) (4)

where α(m) are the weights at iteration m and α(l)(m) are
the cumulative weight updates from sensor l since it was last
updated. Here the communication costs are a factor of p less
than AUR1.

We also consider a synchronous updating rule after k
updates (SURk). In this case each of the N sensors learns
on its own updating weights using a kernel LMS algorithm
or online learning algoritm. After m cumulative updates from
the N sensors where k > N the central processors gets the
weights, αs from each of the sensors and after updating. The
central processor updates its model and sends the information
to the sensor. If a synchronous update occurs at iteration m,
this is described by

α(m+ 1) =

N∑
l=1

cl(m)α(l)(m) (5)
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α(l)(m+ 1) = α(m+ 1) 1 ≤ l ≤ N (6)

For synchronous updates, α(l)(m) is the current weight values
of sensor l at time m. Here the communication savings of
SURm is a factor of m/N over AUR1.

Note that convergence for stochastic gradient algorithms
such as LMS usually follow an exponential curve if step size
µ is not too large. The algorithms AURp and SURk will
perform better than if no information is transmitted between
each sensor and the central processor. If no information is
given between the sensor and central processor convergence
rates for AURp and SURm will be a factor of p and k/N
slower than a centralized updating system. However, each of
the sensors for both algorithms receive information from the
central processor so convergence will be quicker.

Another method to reduce communication and computation
costs is to use selective sampling methods. In selective sam-
pling data is processed only if it can provide new information
for the learning system. One implementation is set membership
filtering (SMF) which is an adaptive filtering paradigm that
features data-dependent selective update of the filter parame-
ters [14], [15]. We have incorporated SMF for kernel adaptive
filtering [16]. SMF can be implemented with the federated
learning algorithms considered here and will be considered in
a future paper.

IV. NUMERICAL SIMULATIONS

Here we consider a nonlinear time series used in [10]. The
dynamics are described by the following nonlinear difference
equation

x(n) = (0.8− 0.5 exp(−x(n− 1)2))x(n− 1)

−(0.3+0.9 exp(−x(n−1)2))x(n−2)+0.1 sin(x(n−1)π)+v(n) (7)

where we have initial conditions x(0) = x(1) = 0.1 and v(n)
is independent and identically distributed zero mean Gaussian
noise with standard deviation 0.1. We generated 3000 data
points from this time series and we considered learning using
Random Fourier Features. The data points were randomly
drawn with two inputs and one output. A vector of 100
was used from the Random Fourier Features from equation
(1). Here we considered a homogenous Federated Learning
case with ten sensors randomly getting data from the 3000
data points. We considered the two algorithms considered in
Section III, AURp and SURk. Results are shown in Figures 1
and 2. The MSE is from the average squared error of the last
500 data points of the time series.

From Figure 1 we see that AUR5 performance has con-
vergence time between 1.5 and 1.8 times slower than the
centralized LMS with communication costs a factor of five
times less than AUR1. Each sensor learns based on their data
and when the sensor’s data is updated by the central processor
they get information from updates by the other sensors. The
central processor sending updates to the sensors definitely
speeds up learning. The performance of AUR10 and AUR15
is slightly worse than AUR5, but these algorithms also benefit
from receiving information from the central processor. AUR15
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Fig. 1. AURp. Lowest curve is centralized LMS with step size µ = 0.2.
Other curves are for p = 5, 10, 15 with step size µ = 0.8. Each simulation
is averaged over 100 trials.
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Fig. 2. SURk. Lowest curve is centralized LMS with stepsize µ = 0.2. Other
curves are for k = 50, 100, 150 with step size µ = 0.8. Each simulation is
averaged over 100 trials.

with communication costs less than AUR1 by a factor of
fifteen has convergence speed that is about four times slower
than centralized LMS. All four simulations converge to a
similar steady state MSE. Step sizes for AURp algorithms can
be larger than centralized LMS as there is more averaging
when the central processor accumulates weights from all
sensors and gives its information to the sensors when they
update.

From Figure 2 we see that SUR50 performance (which has
similar communication costs to AUR5) converges at a slightly
slower rate than AUR5. However, SUR100 and SUR150 has
similar performance to SUR50. This indicates the importance
of the central processor sending weight information to sensors
on a regular basis. The performance of SUR100 and AUR10 is
similar and the performance of SUR150 is slightly better than
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AUR15. An intuitive explanation for this is that updates for
SUR150 are regular and occur every 150 iterations. However,
for AUR15 the number of iterations between updates could
be much longer than 150 iterations and this will likely result
in slower convergence for these sensors and overall slower
convergence. Step sizes for SURk can also be larger than
centralized LMS for similar reasons as AURp.

V. SUMMARY AND FURTHER DIRECTIONS

This paper has established a general framework for real-time
distributed learning using kernel methods using principles of
federated learning. The learning algorithms can be supervised
learning algorithms or unsupervised learning algorithms. The
focus is on learning a single task. Kernel methods are used as
the solution can be posed in terms of a convex optimization
problem. Furthermore we use a squared error cost function
with equality constraints resulting in a least squares support
vector machine (LS-SVM) [6]. Solutions involve solving a
least squares problem either in primal or dual spaces In
the dual space we use a dictionary of basis vectors (either
support vectors or RFF) and the solution can be expressed
as a linear combination of kernel values of a linear filter
or Random Fourier Features. This setup is readily amenable
to online federated learning where communications between
edge processors and the central processor primarily involves
transmitting weight updates α. We discuss various updat-
ing strategies that balance communications, performance, and
computational complexity.

Simulation experiments on a nonlinear time series show
some of the benefits of using synchronous and asynchronous
federate learning. Convergence rate is slower when updating
less often, but the rate of slower convergence is shown to
be much less than the rate of communication savings. We
have recently discussed other ways to save communication
costs by using partial observations where only some of the
weights of the Random Fourier Features are updated, [17].
For this case performance is comparable to centralized LMS
with significant communication savings. We will also explore
how both spatial and temporal relationships between the edge
processors have effects on the learning algorithms. Some of
these can be incorporated into the regularization parameter that
can involve the spatial relationship described by graph signal
processing (e.g. Laplacian matrix). Further research will also
study a theoretical framework confirming the performance of
the different algorithms.

The methods developed here can be applied to a number of
applications where distributed processing and learning occurs.
This includes applications in power systems where local
sensors gather data. In [18] an unsupervised online one class
least squares support vector learning algorithm to learn a the
probability density function of gathered data. This algorithm
was able to detect outlier data and was able to detect bad data
on the electrical grid. This algorithm can easily be modified
using the federated learning model considered here. There
are also many other applications ranging from autonomous

systems to healthcare systems to robotics that we hope to
address in future research.
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