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Abstract—This paper proposes a new voice conversion (VC)
task from human speech to dog-like speech while preserving
linguistic information as an example of human to non-human
creature voice conversion (H2NH-VC) tasks. Although most VC
studies deal with human to human VC, H2NH-VC aims to
convert human speech into non-human creature-like speech. Non-
parallel VC allows us to develop H2NH-VC, because we cannot
collect a parallel dataset that non-human creatures speak human
language. In this study, we propose to use dogs as an example
of a non-human creature target domain and define the “speak
like a dog” task. To clarify the possibilities and characteristics
of the “speak like a dog” task, we conducted a compara-
tive experiment using existing representative non-parallel VC
methods in acoustic features (Mel-cepstral coefficients and Mel-
spectrograms), network architectures (five different kernel-size
settings), and training criteria (variational autoencoder (VAE)-
based and generative adversarial network (GAN)-based). Finally,
the converted voices were evaluated using mean opinion scores:
dog-likeness, sound quality and intelligibility, and character error
rate (CER). The experiment showed that the employment of
the Mel-spectrogram improved the dog-likeness of the converted
speech, while it is challenging to preserve linguistic information.
Challenges and limitations of the current VC methods for H2NH-
VC are highlighted.

I. INTRODUCTION

Voice conversion (VC) is a technology that converts the
speech waveform of the source speaker into a speech waveform
with the characteristics of the target speaker while preserving
linguistic information [1]. Specifically, in many VC methods,
acoustic features are first extracted from the source speaker’s
speech waveform using speech analysis and then converted
to acoustic features similar to those of the target speaker.
Finally, a speech waveform is synthesized using the converted
acoustic features. Most VC studies have focused on human to
human VC. In this study, we consider human to non-human
creature VC (H2NH-VC). H2NH-VC converts human voice
into non-human creature-like voice while preserving linguistic
information. Non-human creature-like voice refers to voice
with certain non-human creature elements such as animals and
monsters speaking in a fantasy world. We expect technologies
that can efficiently generate non-human creature-like voice to
extend the possibility of creative works in cinema production,
game playing, etc. In this study, we focus on dogs as a
representative example of the non-human creature target do-
main because dog voices are relatively easy to collect and are

familiar and prevalent in our daily lives. We define an H2NH-
VC task called “speak like a dog,” task and investigate the
plausibility and challenges of applying existing non-parallel
VC methods in this study. Figure 1 illustrates an overview of
the human to dog VC.

Notably, the recent development of non-parallel VC meth-
ods [2]–[5] has made H2NH-VC a possibility. In studies on
H2NH-VC, the collection of ground truth speech signals has
been a critical barrier to conducting the study. Since “there is
no dog in this world that speaks human languages,” the ground-
truth utterance output from the VC system corresponding to
the input utterance cannot be obtained. Therefore, conventional
VC methods that require parallel data for training, parallel
VC methods [6]–[8], cannot be used. For more examples and
details of parallel VC methods, readers are referred to a recent
review article [9].

The parallel data consists of source and target speech pairs
used to express the same sentence. In contrast, non-parallel
VC methods do not require parallel data. This means that non-
parallel VC methods have theoretically overcome the barrier
of H2NH-VC. Recent deep learning-based, non-parallel VC
methods have achieved a VC that is comparable to the ground
truth speech in a mean opinion score (MOS) test [10], [11].
The baseline methods in Voice Conversion Challenge [12] are
based on generative adversarial networks (GAN) or variational
autoencoders (VAE). One example of a GAN-based method is
StarGAN-VC [13], [14], and one example of a VAE-based
method is the auxiliary classifier VAE-based VC (ACVAE-
VC) [15]. However, the applicability of these non-parallel VC
methods to H2NH-VC tasks has not been explored.

To this end, in this paper, we propose a task called “speak
like a dog,” which is a new task for VC from human voice
into dog-like voice while preserving linguistic information.
We construct datasets and evaluation criteria for this task. In
addition, we investigated how much VC could be achieved
using existing non-parallel VC methods. We experimented
with comparing acoustic features, network architectures, and
training criteria as baseline methods.

The main contributions of this paper are twofold.
• We propose the “speak like a dog” task as an example of

H2NH-VC tasks and construct a dataset and evaluation
criteria.

• We investigated the possibilities and characteristics of
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Human speech

"Isshuukan bakari nyu-
yo-ku wo shuzai shita."
"Ryokan ya hoteru ni 
tuku to hijouguchi wo 

tazuneru."

Dog voice

"Bow wow"
"Bow wow, bow wow"
"Woof, woof"

Ikita junkatsuyu desu.
Optimized
parameter

Ikita junkatsuyu desu.

Fig. 1. Overview of the human to dog VC. The linguistic information in the
training data may differ between speakers.

“speak like a dog” task by conducting an experiment com-
paring existing representative non-parallel VC methods
in acoustic features, network architectures, and training
criteria.

The remainder of this paper is organized as follows. Section
2 defines the speech task as a dog task. Section 3 describes
the methods used in the experiment. Section 4 describes
comparative experiments. Finally, Section 5 concludes the
paper.

II. SPEAK LIKE A DOG TASK

A. Problem definition

The proposed “speak like a dog” task is one of the H2NH-
VC tasks that converts human voice into dog-like voice while
preserving linguistic information and representing a dog-like
element of the target domain. Thus, the VC method should pre-
serve linguistic information and represent dog-like elements. It
is not enough to satisfy only one or the other. In particular, it
is important to preserve linguistic information, that is, uttered
sentences are recognized correctly by listeners, while ensuring
dog-likeness, sound quality, and intelligibility of speech.

B. Dataset

A dataset can be non-parallel but should contain human
speech signals and dog voices. We constructed an example
dataset for the “speak like a dog” task. Details of the dataset
can be found on our website1. The abstract of the dataset is
as follows.
ATR digital sound database. We use the ATR digital sound
database [16] for human speech signals. This is a database
of speech recordings of sentences, single words, and other
standardized content uttered by two male (MMY and MTK)
and two female (FKN and FTK) professional announcers. The
number of each domain’s sounds is 503. Total time for FKN
and MMY dataset is 45 and 39 minutes, respectively.

1https://github.com/suzuki256/dog-dataset

Dog dataset. The dog dataset was constructed from several
studies [17]–[19], Freesound project [20], freesoundslibrary,
and Youtube. Because there is no dog dataset created for VC,
we removed extremely soft, loud, and noisy sounds from our
collected data. We also divided them into two datasets based
on pitch, adult dog and puppy. The number of adult dog and
puppy sounds is 792 and 288, respectively. The total time for
adult dogs and puppies is 36 and 29 minutes, respectively.
Note that the total time includes much of the time between
barks. The dataset is available under the terms of the Creative
Commons Attribution-NonCommercial license.

C. Evaluation criteria

Mean Opinion Score (MOS). We defined three MOSs for
the “speak like a dog” task. They can be obtained by asking
subjects to rate the following three MOS tests on a scale of 1
to 5:

1) Dog-likeness: How much of the dog-like element is
included?
(1 indicates completely not dog-like, and 5 indicates
completely dog-like).

2) Sound quality: How good is the sound quality?
(1 indicates completely low quality, and 5 indicates
completely high quality.)

3) Clarity: How intelligibly were you able to hear the
spoken utterance given a written text of the content of
the spoken utterance?
(1 indicates complete vagueness, and 5 indicates com-
plete intelligibility).

Character Error Rate (CER). To evaluate how H2NH-
VC preserves linguistic information, we use the character
error rate (CER), which represents the error rate between the
transcribed sentences of converted speech by the listener and
the correct sentences. The CER is defined as

CER =
D+S+ I

N
, (1)

where D, S, I, and N are the number of deletion errors, substi-
tution errors, insertion errors, and characters in the reference,
respectively.

III. METHOD

In this section, we introduce the methods for the experiment.
The key elements involved in VC are acoustic features, net-
work architectures, and the methods of learning the conversion
model. Each element has multiple options, but it is not clear
what combination is appropriate for converting human voice
to dog-like voice.

A. Acoustic features

The main acoustic features transformed by VC are MCC
sequences and the mel-spectrogram. MCC is an acoustic
feature that corresponds to the spectral envelope (shape of the
human vocal tract), and the mel-spectrogram is an acoustic
feature that includes a harmonic structure (close to the raw
acoustic spectrum). Therefore, it is not clear whether MCC
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Fig. 2. Overview of ACVAE-VC training [15]. x̃ and x denote acoustic feature
sequences. c̃ and c denote speaker information. z denote latent variable.
qφ (z|x̃, c̃) output the mean µφ and variance σ2

φ
of the latent variable z following

a normal distribution. pθ (x|z,c) output the mean µθ and variance σ2
θ

of the x
that follows a normal distribution. rψ (c|x) output distribution p which speaker
uttered the acoustic feature sequences x.

is appropriate for representing a dog’s spectral envelope. We
predict that the mel-spectrogram works better than MCC in
the “speak like a dog” task. We then compared the results of
the experiments.

B. Network architecture

Network architectures is another element to investigate.
In recent years, both convolutional neural network (CNN)-
based [21]–[24] and recurrent neural network (RNN)-based
network architectures [25]–[27] have been employed in VC
studies. For example, StarGAN-VC is based on three networks,
a generator, discriminator, and domain classifier, with CNN
architectures.

This study focuses on a CNN-based network architecture
that can be easily investigated by changing the kernel size. We
want to investigate how much time range the VC system needs
to capture in the “speak like a dog” task. In the experiment, we
focus on the kernel size k because it is not obvious how wide
a range of time dependencies must be captured in acquiring a
model for converting human voice to dog-like voice.

Notably, unlike humans, dogs’ voice is short. Therefore,
reducing the kernel size of the discriminator and the domain
classifier reduces the receptive field of the CNN. That may
potentially results in more dog-like voice. However, increasing
the kernel size increases the amount of information the CNN
receives and may allow for a conversion that comes closer to
human voice, preserving linguistic information.

C. Training criterion

A VAE-based VC method and a GAN-based VC method
have been proposed to enable non-parallel VC. In this study,
we used StarGAN-VC and ACVAE-VC because they are
known to function in standard VC tasks as benchmark methods
and a type of major generative model.
ACVAE-VC. Figure 2 illustrates an overview of ACVAE-VC.
ACVAE-VC is a VC method that applies the regularization
concept of InfoGAN [28] to conditional VAE (CVAE) [29] One
of the strengths of this method is its fast learning convergence
and stable acquisition of high-performance conversion models.

StarGAN-VC. Figure 3 illustrates an overview of StarGAN-
VC. StarGAN-VC is a VC method that can train many-
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Fig. 3. Overview of StarGAN-VC training [13], [14].

to-many conversion models on non-parallel data based on
StarGAN’s [30] learning method. One of the strengths of this
method is the possibility of obtaining a conversion model that
performs as well as or better than ACVAE-VC, if hyperparam-
eters that allow for good learning convergence can be found.

IV. EXPERIMENT

A. Conditions

The speaker information used for training the VC mod-
els were (“FKN,” “MMY,” “people (FKN, FTK, MMY, and
MTK),” “adult dog,” “puppy,” and “dogs (adult dog and
puppy)”). Ten recording samples were randomly selected from
each domain as evaluation data. The remaining data of each
domain were used as the training data. The sounds used
in the evaluation is that converted from FKN to adult dog,
original sounds of FKN and adult dog before the conversion,
and white noise. Five listeners took part in experiment. The
listeners participated in each MOS test only once. Regarding
CER tests, each converted voice was presented to a listener
twice to prevent the listener from missing to listen to it.
In this experiment, we generated a speech waveform using
WORLD [31] (D4C edition [32]) and parallel WaveGAN [33],
and the acoustic features input to the VC model were the
MCC sequences and mel-spectrogram, respectively. We trained
Parallel WaveGAN with the same dataset as the VC method.
Experiment 1: comparing acoustic features and learning
methods. We performed VC using StarGAN-VC with MCC
and the mel-spectrogram and ACVAE-VC with MCC and the
mel-spectrogram using default kernel sizes in original paper.
Experiment 2: comparing the kernel size k of the con-
version model (CNN). We define the kernel size kd of the
discriminator and domain classifier described in the original
paper as default values. The kernel size kd − 2, kd − 1, kd ,
kd +1, and kd +2 in the time direction were compared. Figure 4
illustrate the original paper’s architectures for the discriminator
and domain classifier, respectively. Bold letters indicate the
default kernel size kd for each layer. The value kd was changed
in this experiment.

B. Result

Tables I and II show the results of the MOS and CER
tests in Experiment 1. In all Tables, “melspec” and “original”
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Fig. 4. Network architecture of the discriminator and classifier [14], [30]. In
input and output, “h”, “w”, and “c” represent height, width, and number of
channels, respectively. In addition, “k”, “c”, and “s” denote kernel size, number
of channels, and stride size, respectively. Conv1d, BatchNorm, GLU, and
Deconv1d denote the 1D convolution layers, batch normalization, gated linear
units, and 1D transposed convolution layers, respectively. Batch normalization
is applied to each input channel. The class index vectors were repeated along
the time direction and then concatenated to the input of each convolution layer.

TABLE I
RESULT OF THE MOS TEST IN EXPERIMENT 1

Methods Dog-likeness
Sound
quality Clarity

StarGAN-VC (MCC) 1.20 1.28 0.92
StarGAN-VC (melspec) 4.20 2.76 2.04

ACVAE-VC (MCC) 2.04 2.24 1.76
ACVAE-VC (melspec) 4.24 2.36 1.36

FKN (original) 1.00 4.80 5.00
Adult Dog (original) 5.00 3.70 1.00

White Noise 1.10 1.20 1.00

denote the mel-spectrogram and the unconverted test data,
respectively. The bold and underlined numbers in all the tables
also denote the highest numerical value of conversion human
voice to dog-like voice and the value of voice expected to
obtain the highest numerical value in each MOS evaluation,
respectively. The notation inside parentheses next to each VC
method in Table I denotes the input acoustic features.

Table I shows that the method using the mel-spectrogram
produces a more dog-like voice than the method using the
MCC. Regarding sound quality, StarGAN-VC with a mel-
spectrogram produced the best results. It is clear that StarGAN-
VC with a mel-spectrogram also has the highest clarity of

TABLE II
RESULT OF THE CER TEST IN EXPERIMENT 1

Methods 1st sound 2nd sound
StarGAN-VC (MCC) 1.00 1.00

StarGAN-VC (melspec) 0.97 0.95
ACVAE-VC (MCC) 0.97 0.94

ACVAE-VC (melspec) 0.98 0.97
FKN (original) 0.03 0.02

TABLE III
RESULT OF THE MOS TEST IN EXPERIMENT 2

Kernel size Dog-likeness
Sound
quality Clarity

kd +2 2.20 2.40 2.00
kd +1 2.40 2.08 2.12

kd 2.60 2.80 2.60
kd -1 2.28 2.28 3.00
kd -2 2.60 2.48 2.88

FKN (original) 1.00 4.70 5.00
Adult Dog (original) 5.00 3.20 1.00

White Noise 1.10 1.00 1.00

TABLE IV
RESULT OF THE CER IN EXPERIMENT 2

Kernel size 1st sound 2nd sound
kd +2 0.93 0.89
kd +1 0.95 0.92

kd 0.97 0.95
kd -1 0.83 0.80
kd -2 0.87 0.76

FKN (original) 0.03 0.02

spoken utterances. In contrast, for ACVAE-VC, we observed
that the use of MCC as an acoustic feature synthesizes clearer
voice than the use of a mel-spectrogram.

Table II indicates that there is no significant improvement
in CER while the ACVAE-VC with MCC has the smallest
error. This shows that the non-parallel VC methods did not
successfully achieve the “speak like a dog” task preserving
linguistic information satisfactorily. However, we can notice
some language-like sentences were made from converted voice
when listening to the sound generated by ACVAE-VC (MCC).
That did not contribute to CER much.

Table III and IV show the results of the MOS and CER test
in Experiment 2. From Table III, it is clear that the kernel size
of the default value and the kernel size of the default value
minus 2 produce a relatively better dog-like voice. Regarding
sound quality, we find that the default values are the best. It
can be seen that the clarity of the spoken utterance is best at the
kernel size of the default value minus 1. Table IV indicates that
the kernel size of the default value −1or −2 has the smallest
error.

C. Discussion

In the results of the MOS test in Experiment 1, the mel-
spectrogram may have a better representation of dog-like voice
than the MCC, as predicted by Section III-A.

There was no significant difference for dog-like ele-
ments between StarGAN-VC and ACVAE-VC using the mel-
spectrogram in quantitative evaluation. However, when we lis-
tened to the converted sounds, we found qualitative differences
subjectively. Sounds produced by ACVAE-VC had a tendency
to preserve language-like expressions. The converted sounds
can be listened to on our website1.

From the MOS values for clarity in Table I and the CER
values in Table II, ACVAE-VC with the mel-spectrogram
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preserves less clarity and linguistic information than ACVAE-
VC with the MCC. This may be because the source filter
model on which the vocoder is based imitates the human voice
production process.

In the results of the CER test of Experiment 1, the high
value of CER with existing methods indicates the difficulty
of preserving linguistic information in the “speak like a dog”
task.

In Experiment 2, unlike what was predicted in Section IV-A,
increasing the kernel size from the default value did not
improve the preservation of linguistic information. This may
be because the discriminator and the domain classifier were
trained to include the dog’s voice and silent intervals by
increasing the kernel size. We found that relatively small kernel
size, e.g., kd − 1 or kd − 2, had a better performance in the
“speak like a dog” task, generally.

V. CONCLUSIONS

In this study, we proposed the “speak like a dog” task as an
example of a human to non-human creature VC task. Although
we could convert human voices into dog-like voices in a
fragmented manner, we found that it is challenging to preserve
linguistic information. It was clear that VC methods that
worked well for standard VC tasks did not work sufficiently
well here. We also found that using a mel-spectrogram instead
of an MCC is important in this task.
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