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Abstract—Understanding humans’ emotions is a challenge for
computers. Nowadays, research on speech emotion recognition
has been conducted progressively. Instead of a speech, affective
information may lay on short vocal bursts (i.e., cry when sad). In
this study, we evaluated a recent self-supervised learning model to
extract acoustic embedding for affective vocal bursts tasks. There
are four tasks investigated on both regression and classification
problems. Using similar architectures, we found the effectiveness
of using a pre-trained model over the baseline methods. The study
is further expanded to evaluate the different number of seeds,
patiences, and batch sizes on the performance of the four tasks.

Index Terms—affective computing, affective vocal bursts, pre-
trained model, wav2vec 2.0, speech emotion recognition

I. INTRODUCTION

Affective computing is an emerging field in technology
for understanding human emotions by computers. It is a
combination of interdisciplinary fields, from computer science
to psychology. The goal of affective computing is to analyze
and synthesize human emotions, i.e., creating a system that
can interact with humans naturally. The system can be used in
various fields, such as healthcare, education, and entertainment.
The information for the system can be collected from various
sources, such as speech, facial expressions, and body language.

One of the key components of affective computing is speech
emotion recognition, which uses speech (verbal communica-
tion) as a source to analyze and synthesize human emotions.
Speech emotion recognition is a challenging task since it is
difficult to distinguish between emotional states. For example,
the emotion of anger and fear are similar since both of
them are expressed by raising the pitch of the voice. The
emotion of happiness and sadness are also similar since both
of them are expressed by lowering the pitch of the voice.
Given these difficulties, analyzing emotions from humans’
non-verbal communication may improve our understanding of
human emotions.

Vocal bursts, non-verbal vocalizations like laughter and
cries, constitute a potential source of information for emotion
[1]. Scherer [2] proposed to model vocal communication as
Brunswik’s lens model from encoding (expression) to repre-
sentation (perception). There is no exact number of emotion
categories resulting from this study. The authors mentioned
eight examples of emotion categories with ranges of impor-
tance for their design features delimitation (e.g., intensity).
A study by Cowen et al. [3] has found that vocal bursts are
rich in emotional information that can be conceptualized into

24 emotion categories. Nevertheless, the research on affective
vocal bursts has been limited by the lack of data until recently.

The workshops, challenges, and competitions on affective
vocal bursts accelerate research on affective vocalizations and,
at the same time, provide a dataset to experiment with [4],
[5], [6]. In [4], one of the challenges is the vocalization sub-
challenge. The participants are tasked to predict one of the
six classes of categorical emotions for vocal bursts provided
in the test set. In [5], two out of three tasks are vocal
bursts recognition from multitask and few-shot learnings. The
challenge employed a large Hume-VB dataset [7] with 59201
samples. In [6], the Hume-VB dataset is again used for all
four tasks of affective vocal burst recognition. Three tasks
are regression problems for measuring either the intensity of
emotion categories or valence and arousal; another task is for
predicting the type of vocal burst. This study partially intended
to participate in this challenge.

Previous works on affective vocal burst have been pro-
posed to accept the challenges in competitions and work-
shops. Belanic et al. [8] evaluated two classifiers, ResNet and
Conformer, for multitask vocal bursts modeling and achieved
improvements over the baseline method on the validation set.
Anuchitanukul and Specia [9] proposed Burst2Vec approach
and achieved state-of-the-art results on ExVo multitask learn-
ing track. Purohit et al. [10] evaluated supervised and semi-
supervised learning for the same ExVo multitask learning prob-
lem and showed that semi-supervised learning outperforms
supervised learning in terms of the overall score. As it has been
noted in [8], these results may only apply to the associated
dataset/challenge and may not necessarily generalize to other
datasets.

This study contributes to the affective computing research
by evaluating a pre-trained acoustic feature extractor for all
affective vocal tasks in The ACII Affectice Vocal Bursts
Workshop & Competition [6]. Using the same architecture
for all tasks, we obtained remarkable improvements over the
baseline methods provided by the organizer. We also evaluated
the effect of the different numbers of seeds, patiences, and
batch sizes on the performance of the four tasks.

The next sections describe the methods, results and dis-
cussion, and the conclusion. The methods include the dataset
and tasks, a pre-trained feature extractor, and the classifier.
A pre-trained acoustic feature extractor is the key method in
this work, which is compared to the baseline methods on the
four tasks with the same classifier. The results and discussion
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section discuss the experiment results on different conditions;
the conclusion section summarizes the findings.

II. DATASET AND TASKS

This study employed Hume-VB dataset [6], [7] to predict
four tasks of affective vocal bursts. The dataset consists of 36
hours of recording from 1702 speakers across four countries:
China, South Africa, the US, and Venezuela. Each vocal burst
was labeled on an integer scale from 1 to 100 for ten expressed
emotions: amusement, awe, awkwardness, distress, excitement,
fear, horror, sadness, surprise, and triumph. The integer scale
was scaled to [0,1] during the experiments. The original raw
audio data were sampled at 48 kHz (but resampled to 16 kHz
for the experiments). The data were already partitioned into
training, validation, and test sets for each task by the organizer
of the challenge. No label is provided for the test set; the score
to obtain the test set’s performance is obtained by emailing the
predictions to the organizers.

There are four tasks provided in the ACII 2022 affective
vocal bursts workshop and competition. The first task, called
“High”, is to predict the intensity of 10 aforementioned emo-
tions. The second task, called “Two”, is to predict the degree
of valence and arousal for given vocal bursts in the test set.
The third task, called “Culture”, is to predict the intensity of
40 emotions (10 from each culture) as a multioutput regression
problem. The fourth task, called “Type”, is to predict the type
of given vocal bursts in the test set. There are eight types of
vocal bursts in the fourth task: gasp, laugh, cry, scream, grunt,
groan, pant, and other. The first to third tasks are regression
problems with concordance correlation coefficient (CCC) as
the evaluation metric; the last task is a classification problem
with unweighted average recall (UAR) as the evaluation metric.

III. PRE-TRAINED ACOUSTIC FEATURE EXTRACTOR

Pre-trained models recently gained more attention due to
their effectiveness in modeling data based on self-supervised
learning, including pre-trained models for speech emotion
recognition. One of the models built for this specific purpose,
i.e., speech emotion recognition, is proposed by Wagner et
al. by incorporating a large and robust version of wav2vec
2.0 on the affective speech dataset [11], [12]. The base model
is Robust wav2vec 2.0 [13] trained on MSP-Podcast dataset
[14]. One of the outputs of the model is the hidden states
which can be used as acoustic features or acoustic embedding
for affective-related tasks. Another output is logits, the degree
of arousal, dominance, and valence in a range [0, 1]. We
concatenated the hidden states (1024-dims) and logits (3-dims)
as acoustic embedding for all vocal burst tasks (w2v2-r-vad,
1027-dims). The acoustic embedding was then fed to the
regression or classification model, depending on the task.

IV. CLASSIFIERS

Research on deep neural networks has been developed pro-
gressively with several new architectures. Nevertheless, clas-
sical approaches such as fully-connected networks or multi-
layer perceptron have shown competitiveness against newer

architectures like LSTM or CNN [15]. In this study, we
employed a fully-connected network as the classifier. The
fully-connected network is a feed-forward neural network with
three hidden layers. The number of nodes for each layer is
128, 64, and 32, respectively. Each layer is connected to
batch normalization [16] layer and leaky rectified linear unit
(LeakyReLU) activation function. The number of nodes at the
output layers depends on the task, i.e., 10 for High, 2 for Two,
10 for Culture, and 8 for Type. The output layer for regression
problems is activated with a sigmoid function.

Fig. 1 and Table I depict the architecture and hyperpa-
rameters of the fully-connected network. The architecture and
hyperparameters are the same for all tasks. The learning rate
is set to 0.001, weight decay is set to 0.01, and the maximum
number of epochs is 25. The optimizer is AdamW [17] with
a weight decay of 0.01. For ablation experiments, the authors
varied the number of seeds from 5 to 20, the patience from 5
to 25, and the batch size from 4 to 1024.

Three tasks, High; Two, and Culture, employed MSE loss
to be minimized. The Type task employed cross-entropy loss
to be minimized. The evaluation metric is the concordance
correlation coefficient (CCC) for High, Two, Culture and is
an unweighted average recall (UAR) for Type. The range for
CCC scores is in [-1, 1], whereas the UAR score is in [0, 1].
The reported scores for evaluation on the validation set are the
maximum or average of five runs.

TABLE I
HYPERPARAMETERS OF THE CLASSIFIER

Hyper-parameter Value
Layer MLP
N layers 3
Nodes (128, 64, 32)
Normalization BatchNorm1d
Layer activation LeakyReLU
Output activation Sigmoid
Optimizer AdamW
Learning rate 0.001
Weight decay 0.01
Number of seeds 5 – 20
Batch size 4 – 1024
Patience 5 – 25
Patience delta 0.01

V. RESULTS AND DISCUSSION

We present our experimental results in different ways.
First, we evaluated the performance of the proposed acoustic
features, w2v2-r-vad, on the same classifier for four different
tasks. Then, we reported ablation studies on different batch
sizes and numbers of patience to optimize our methods.
Finally, we reported the test results on the hidden set.

A. Comparison of Different Acoustic Features

At first, we evaluated different acoustic embeddings on
the same classifier explained in the previous section. As the
baselines are ComParE feature set [18] with 6373-dims and
eGeMAPS feature set [19] with 88-dims. The proposed acous-
tic embedding is w2v2-r-vad with 1027-dims. The experiments
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Fig. 1. Architecture of MLP networks for all tasks, the example is for
regression ”High” task with 32 batch size for 10 outputs.

for comparing these acoustic embeddings are set at batch size
32, the patience of 10 epochs, and a single seed of 109. The
architecture and hyperparameters are optimized for w2v2-r-vad
embedding.

Table II shows evaluation of different acoustic embedding
on validation set. The table clearly indicates the superiority
of w2v2-r-vad among other acoustic embeddings. For all four
tasks, w2v2-r-vad achieved the top performance with remark-
able gaps. The assumption that the self-supervised learning
(SSL) model will achieve better performances than traditional
acoustic features has been proven in this study. Moreover,
the effectiveness of this wav2vec 2.0-based model trained on
the affective speech dataset may be compared with other SSL
methods in the future.

B. Effect of Seed Number

Seed number to initiate the process of deep learning meth-
ods has been crucial for finding the best performance and
stability of the model [20], [21]. While the previous study
only evaluated single seeds to determine the best model with
associated seed [22] in repeated experiments, this study eval-
uated different numbers of seeds for initiations. The authors

TABLE II
MAXIMUM VALIDATION SCORES ON DIFFERENT ACOUSTIC FEATURES ON

THE SAME CLASSIFIER (CCC FOR HIGH, TWO, AND TYPE; UAR FOR
TYPE)

Feature High Two Culture Type
ComParE 0.4734 0.4648 0.3762 0.3694
EgeMAPS 0.1790 0.1049 0.1672 0.2767
w2v2-r-vad 0.6427 0.6023 0.4802 0.4502

evaluated 5, 10, 15, and 20 different seed numbers to observe
the performance of the model. The model randomly chooses
these numbers from 101 to 120. Both maximum and average
scores from different seed numbers are reported (Table III and
Fig. 2).

Table III shows maximum scores using different seed num-
bers. It is shown that the effect of different seed numbers
is minimum. No remarkable difference has been found in
using different seed numbers from 5 to 20 numbers. The gap
between the highest and lowest scores on four tasks are 0.0008,
0.0030, 0.0013, and 0.0111 for High, Two, Culture, and Type,
respectively. The largest gap is between 5 seed numbers and
ten seed numbers on the Type task. Given this finding, it is
reliable to evaluate the model with a minimum number of 5
seeds to report the average performance of the model. The
average score of different seed numbers is still needed since
the model is non-deterministic, meaning that the model will
produce different results in different runs.

To evaluate the stability of the model over different seed
numbers, Fig. 2 summarizes the experiments by showing av-
erage scores and their standard deviations. As in the maximum
scores report, there is no remarkable difference in the average
scores of the different seed numbers. The average scores and
their deviation shows the stability of the evaluated model, a
three-layer MLP with 128, 64, and 32 nodes, for all affective
vocal burst tasks.

TABLE III
MAXIMUM SCORES AS AN EFFECT OF THE NUMBER OF SEEDS ON THE
VALIDATION SET (CCC FOR HIGH, TWO, AND TYPE; UAR FOR TYPE)

N seeds High Two Culture Type
5 0.6448 0.6136 0.4876 0.4786
10 0.6466 0.6146 0.4898 0.4638
15 0.6457 0.6097 0.4876 0.4685
20 0.6466 0.6108 0.4929 0.4709

C. Effect of Batch Sizes

The next evaluation is the different batch sizes (for each
task), which is crucial in training deep learning methods. As
shown in this study, using different batch sizes lead to different
performances. The authors evaluated 32, 64, 128, 256, 512,
and 1024 batch sizes. Both maximum and average scores are
reported in Table IV and Fig. 3. In contrast to the previous
evaluation of the different numbers of seeds, the gaps between
the highest and lowest scores in maximum scores are 0.0383,
0.0621, 0.0392, and 0.0172 for High, Two, Culture, and Type,
respectively. As shown in maximum scores in Table 3, using
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Fig. 2. Average scores (CCC and UAR) from the different number of seeds
with their standard deviations

batch sizes of 16, 32, 64, or 128 achieves the same level of
performance among other batch sizes.

For choosing the optimal batch size for each task, the
average scores are more meaningful than the maximum scores.
These scores show the stability of the model (with evaluated
batch size) over different runs. The evaluation (Fig. 3) leads to
the following optimal batch size for each task: High with 32
batch size, Two and Culture with 64 batch size, and Type with
128 batch size. Hence, for submitting the test evaluations, the
authors used the optimal batch size for each task in addition
to the same batch size for all tasks.

TABLE IV
MAXIMUM SCORES OF DIFFERENT BATCH SIZES ON THE VALIDATION SET

(CCC FOR HIGH, TWO, AND TYPE; UAR FOR TYPE). FOR AVERAGE
SCORES SEE FIG. 3.

Batch size High Two Culture Type
4 0.6093 0.5524 0.4587 0.4595
8 0.6343 0.5932 0.4796 0.4696
16 0.6429 0.6056 0.4902 0.4773
32 0.6426 0.6095 0.4913 0.4765
64 0.6430 0.6070 0.4911 0.4743
128 0.6419 0.6026 0.4842 0.4786
256 0.6404 0.6022 0.4837 0.4698
512 0.6370 0.6072 0.4735 0.4769
1024 0.6311 0.6048 0.4632 0.4702

D. Effect of Number of Patiences

The final evaluation is the effect of the different numbers of
patience. The number of patience is needed to terminate the
learning process once there is no improvement in the given
number of patience. In this study, the authors evaluated five
different numbers of patience: 5, 10, 15, 20, and 25. Note that
using 25 of patience means no early stop criterion was used
since the maximum number of epochs is also 25. The results
are shown in Table V and Fig. 4 for maximum and average
scores.

Both maximum scores in Table V and average scores in
Table 4 indicate no remarkable difference in using different
numbers of patience, as the authors found on the seeds’
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Fig. 3. Average scores (CCC and UAR) from five seeds with their standard
deviations as a function of batch size

evaluation. The gaps between the highest and lowest scores
in maximum scores are 0.0044, 0.0083, 0.0032, and 0.0226
for High, Two, Culture, and Type, respectively. Similar gaps
were also observed in average scores. Given this finding, using
five patiences is enough to terminate the learning process and
to make predictions based on that model.

TABLE V
MAXIMUM SCORES AS THE EFFECT OF THE NUMBERS OF PATIENCE ON

THE VALIDATION SET (CCC FOR HIGH, TWO, AND TYPE: UAR FOR TYPE)

N patiences High Two Culture Type
5 0.6438 0.6084 0.4851 0.4758
10 0.6452 0.6106 0.4903 0.4786
15 0.6425 0.6122 0.4876 0.4592
20 0.6460 0.6036 0.4875 0.4672
25 0.6416 0.6088 0.4920 0.4496

0.637 0.6414 0.6403 0.6403 0.6391
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Fig. 4. Average scores (CCC and UAR) from the different numbers of patience
with their standard deviations

E. Test Benchmark

The previous evaluations were conducted on the validation
set since the labels of the test set are not provided; the follow-
ing evaluation report scores on the test set. The scores were
obtained by submitting the predictions of the test set to the
organizer of The ACII 2022 Affective Vocal Bursts Workshop
and Competition. The authors submitted two predictions. One
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TABLE VI
PERFORMANCE SCORES ON THE TEST SET (CCC FOR HIGH, TWO, AND TYPE; UAR FOR TYPE)

Feature High Two Culture Type
Val. Test Val. Test Val. Test Val. Test

ComParE 0.5154 0.5214 0.4942 0.4986 0.3867 0.3887 0.3913 0.3839
eGeMAPS 0.4484 0.4496 0.4114 0.4143 0.3229 0.3214 0.3608 0.3546
End2You 0.5638 0.5686 0.4988 0.5084 0.4359 0.4401 0.4166 0.4172
w2v2-r-vad #1 0.6427 0.6440 0.6023 0.5948 0.4802 0.4835 0.4502 0.4560
w2v2-r-vad #2 0.6466 0.6478 0.6156 0.6142 0.4929 0.4962 0.4810 0.4791

is with the same batch size of 32 for all tasks, and the other is
with the optimal batch size for each task (32 for High, 64 for
Two and Culture, and 128 for Type). The results are shown
in Table VI. As the baselines, the authors quoted results from
[6] with eGeMAPS [19], ComParE [18], and End2You [23]
approaches.

It clearly shows that our two approaches with w2v2-r-
vad gain remarkably better scores than the best method with
End2You approach. On the first submission with the same 32
batch size for all tasks (w2v2-r-vad #1), we improved the
End2You approach by absolute margins of about 0.0388 to
0.09 for all tasks. By employing our findings on batch size
evaluation, i.e., using a specific batch size for each task, we
slightly improved our scores from the first submission to the
second submission (w2v2-r-vad #2) by absolute margins of
about 0.0561 to 0.1094 from the best baseline. This finding
indicates that the optimal batch size for each task is better than
the same batch size for all tasks. It also can be noted in the
comparison of validation and test scores that the gap between
the two scores is not large, which means that the model is not
overfitting.

VI. CONCLUSION

In this study, we evaluated leveraging the pre-trained self-
supervised learning model, trained on an affective speech
dataset, for affective vocal bursts tasks. The authors eval-
uated the same architecture for four affective vocal burst
tasks and obtained improvements over the baseline methods
using traditional acoustic features and an end-to-end approach.
The best scores from baseline methods were obtained by
End2You, while the best scores from the proposed approach
were obtained by w2v2-r-vad second submission with 32,
64, 64, and 128 batches for High, Two, Culture, and Type
tasks, respectively. The gains for these tasks are from 0.5686
to 0.6478, 0.5084 to 0.6142, 0.4401 to 0.4962, and 0.4172
to 0.4791. Our methods improved the affective vocal burst
recognition maximally at predicting valence and arousal (the
Two task) and minimally at the Culture task. Although the
expression of vocal burst is general across cultures, there is
a need for adjustment for different cultures in building an
affective recognition model, which is shown by different results
(High vs. Culture) and improvement (on the Culture task).
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