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Abstract—Compressed sensing is a framework for reconstruct-
ing sparse signals from their underdetermined linear measure-
ments. In this paper, we discuss compressed sensing algorithms
appropriate for the implementation with optical circuits, which
have attracted attention as a technology that can perform vector-
matrix products at high speed with low power consumption.
Although the fast iterative shrinkage thresholding algorithm
(FISTA) is one of the basic compressed sensing algorithms,
updating the inertial parameters is difficult to implement in
optical circuits. We thus propose an algorithm by replacing
the inertial parameter of FISTA with a constant and evaluate
its performance via computer simulations. Simulation results
show that the proposed algorithm with an appropriate inertial
parameter can achieve comparable performance to the original
FISTA.

I. INTRODUCTION

Compressed sensing [1] is a framework for recovering
sparse signals from a small amount of observed data. Since
various signals in engineering have the sparsity, compressed
sensing has many applications in image processing, wireless
communications, control engineering, and other fields [2][3].

One of the basic compressed sensing algorithms is the
iterative shrinkage thresholding algorithm (ISTA) [4]. ISTA
is an iterative algorithm based on convex optimization and it
iteratively updates the estimate of the sparse unknown vector to
obtain a final estimate. The fast iterative shrinkage thresholding
algorithm (FISTA) [5] has been proposed as an accelerated
version of ISTA. FISTA reduces the number of iterations for
the convergence compared to ISTA by introducing an inertial
parameter in the update equations and updating the estimate
based on the last two estimates.

One way to reduce latency and power consumption of
reconstructions in compressed sensing is the use of faster
and more power-efficient computers. However, since the per-
formance of the complementary metal oxide semiconductor
(CMOS) computer is reaching the limit [6][7], we need to take
another approach to achieve much lower latency and power
consumption than current CMOS-based computers.

This work was supported in part by JST, CREST, Grant Number JP-
MJCR21C3, Japan and JSPS KAKENHI Grant Number JP20K23324.

For the fast and efficient computation, analog computing
with optical circuits [6][7] have attracted much attention in
photonics. Unlike conventional electronic circuits, optical cir-
cuits use photons instead of electrons as information carriers.
Optical circuits can thus perform some operations such as
vector-matrix products with lower latency and power con-
sumption than conventional electronic circuits. However, since
there are limitations on the operations that can be performed
with optical circuits, we cannot necessarily implement all
algorithms with optical circuits.

In this paper, we discuss compressed sensing algorithms
appropriate for optical circuits to achieve low latency and
power consumption of the reconstruction. Since the original
FISTA requires the division by a dynamic variables to update
the inertial parameter, it is difficult to implement in optical
circuits. We thus propose FISTA with constant inertial param-
eters, reffered to as constant inertial FISTA (CIFISTA), as a
compressed sensing algorithm suitable for the implementation
in optical circuits. To determine the possible range of the
constant inertial parameter, we obtain the range of the inertial
parameters in the original FISTA. Moreover, we evaluate the
performance of CIFISTA by computer simulations. The sim-
ulation results show that the value of the appropriate constant
inertial parameter depends on the problem setup and other
parameters of the algorithm. Furthermore, the results also show
that the proposed CIFISTA can achieve similar performance
to the original FISTA when we choose an appropriate value
of the constant inertial parameter.

II. COMPRESSED SENSING VIA FISTA
A. Compressed Sensing

The basic problem setup for compressed sensing is to
estimate a sparse unknown vector x∗ ∈ RN from a known
linear measurement vector

y = Ax∗ + e ∈ RM (N ≥ M), (1)

where A ∈ RM×N is a known measurement matrix, and e ∈
RM is the measurement noise.

The estimation accuracy of the unknown vector depends
on the relationship between N and M . In the absence of
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Algorithm 1 ISTA

Require: γ > 0, x0 ∈ RN .
t = 0
repeat

ut+1 = xt − γA⊤(Axt − y)
xt+1 = Sγλ(ut+1)
t = t+ 1

until convergence;

measurement noise, i.e., e = 0, a necessary and sufficient
condition for the perfect estimation is rankA = N in general.
On the other hand, when M < N , that is, when the number
of variables N is larger than the number of measurements M ,
the solution cannot be uniquely determined and it is difficult
to correctly identify x∗. However, taking advantage of the fact
that the unknown vector x∗ is sparse, it may be possible to
completely reconstruct the unknown vector x∗ from y even
when M < N [1].

B. ℓ1-ℓ2 reconstruction
One way to estimate the sparse unknown vector x∗ from

the noisy measurement y in (1) is to compute the solution of
the ℓ1-ℓ2 optimization problem

x̂ = arg min
x∈RN

{
1

2
∥Ax− y∥22 + λ∥x∥1

}
(2)

as the estimate. Here,

∥x∥1 =

N∑
i=1

|xi| (3)

and

∥x∥2 =

√√√√ N∑
i=1

x2
i (4)

are the ℓ1 norm and the ℓ2 norm of the vector x =
[x1 · · ·xN ]⊤, respectively, where (·)⊤ denotes the transpose.
The first term 1

2∥Ax − y∥22 of the objective function of (2)
is the objective function used in the least squares method.
The optimization problem (2) can be interpreted as a sparse
estimator while minimizing the difference between y and Ax.
The parameter λ (> 0) determines how much the sparsity of
the estimate is emphasized. When λ is large, the optimization
problem gives priority to the sparsity of the estimate over the
smallness of the difference between y and Ax. Conversely,
when λ is small, priority is given to reducing the difference
between y and Ax rather than to making the estimate sparse.

C. ISTA
ISTA is an algorithm for the optimization problem (2), and is

shown in Algorithm 1. We define the soft thresholding function
Sα(v) as

Sα(v) ≜


v − α (v ≥ α)

0 (−α < v < α),

v + α (v ≤ −α)

(5)

Algorithm 2 FISTA

Require: γ > 0, z0 = x0 ∈ RN .
t = 0, s0 = 1
repeat
ut+1 = zt − γA⊤(Azt − y)
xt+1 = Sγλ(ut+1)

st+1 =
1+

√
1+4s2t
2

at+1 = st−1
st+1

zt+1 = xt+1 + at+1(xt+1 − xt)
t = t+ 1

until convergence;

where α > 0 and v ∈ R. When the input of the soft
thresholding function is a vector, it is defined as the element-
wise operator.

As shown in [9], ISTA converges when γ satisfies

0 < γ ≤ 1

λmax(A⊤A)
, (6)

where λmax(A
⊤A) is the maximum absolute value of the

eigenvalues of the matrix A⊤A, i.e., spectral radius of A⊤A.
Let f(x) be the objective function of the optimization

problem (2). The error f(xt)−f(x̂) at step t of ISTA satisfies

f(xt)− f(x̂) ≤ λmax(A
⊤A)∥x0 − x̂∥22

2t
, (7)

which means that the order of the convergence of the objective
function is O(1/t) [5].

D. FISTA

FISTA is a fast algorithm based on ISTA. The update
equations of FISTA is shown in Algorithm 2.

While ISTA computes ut+1 using xt+1, FISTA computes
ut on the basis of zt by introducing an acceleration formula
zt+1 = xt+1 + at+1(xt+1 −xt) with inertial parameter at+1.
This acceleration enables us to use the last two estimates xt

and xt−1 for the calculation of xt+1. By this acceleration, the
error of the objective function f(xt) − f(x̂) at the t-step of
FISTA satisfies

f(xt)− f(x̂) ≤ 2λmax(A
⊤A)∥x0 − x̂∥22
(t+ 1)2

. (8)

This means that the order of the convergence of FISTA is
O(1/t2), which is faster than that of ISTA [5].

III. FISTA WITH CONSTANT INERTIAL PARAMETER

In this section, we describe FISTA in the complex domain
and the proposed CIFISTA, which is more appropriate for
optical circuits.
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Algorithm 3 FISTA in the complex domain

Require: γ > 0, z0 = x0 ∈ CN .
t = 0, s0 = 1
repeat

ut+1 = zt − γAH(Azt − y)
xt+1 = Tγλ(ut+1)

st+1 =
1+

√
1+4s2t
2

at+1 = st−1
st+1

zt+1 = xt+1 + at+1(xt+1 − xt)
t = t+ 1

until convergence;

A. FISTA in the Complex Domain

Since optical circuits can handle complex numbers, in this
and the subsequent sections, we consider the compressed sens-
ing problem in the complex domain. Especially, we estimate
a complex sparse vector x∗ ∈ CN (N ≥ M) from a known
measurement vector

y = Ax∗ + e ∈ CM , (9)

where A ∈ CM×N is the measurement matrix and e ∈ CM

is the measurement noise.
For the extension of FISTA to the complex domain, we need

to define a soft thresholding function for complex numbers. In
this paper, the soft thresholding function for a complex number
is defined as

Tα(v) ≜

(|v| − α)
v

|v|
(|v| ≥ α)

0 (|v| < α)
(10)

as in [10], where α > 0 and v ∈ C. The algorithm of FISTA
in the complex domain with the soft thresholding function
(10) is shown in Algorithm 3, where (·)H denotes the complex
conjugate transpose.

B. Proposed Constant Inertial FISTA

One of the problems in executing FISTA with optical
circuits is the difficulty of the update of at+1, which requires
division by the dynamic variable in st+1. Therefore, the
acceleration formula of zt+1 required for faster convergence
than ISTA is difficult to implement in optical circuits. We
thus replace the inertial parameter at+1 of the original FISTA
with a constant c and propose the resultant algorithm with the
pseudo acceleration formula as an approach suitable for optical
circuits.

The following holds for the inertial parameter at+1 in the
original FISTA.

Lemma 1. For any t, we have

0 ≤ at+1 < 1 (11)

and
lim
t→∞

at+1 = 1. (12)

Proof: From st+1 =
1+

√
1+4s2t
2 , we have

st <
1 +

√
1 + 4s2t
2

= st+1. (13)

From this and s0 = 1, we have

1 ≤ st < st+1. (14)

Subtracting 1 from (14), we have

0 ≤ st − 1 < st+1 − 1 < st+1. (15)

Dividing (15) by st+1 yields

0 ≤ st − 1

st+1
< 1. (16)

From at+1 = st−1
st+1

and (16), we obtain

0 ≤ at+1 < 1. (17)

Next, to show
lim
t→∞

st = ∞, (18)

we use mathematical induction on t to prove that
√
t

2
< st (19)

holds for any natural number t. It is clear that (19) holds when
t = 0. Assuming that it holds for t = k, it also holds for
t = k + 1 since

sk+1 =
1 +

√
1 + 4s2k
2

>
1 +

√
1 + k

2
>

√
1 + k

2
. (20)

Therefore, (19) holds for any natural number t. Furthermore,
since

lim
t→∞

√
t

2
= ∞, (21)

we have
lim
t→∞

st = ∞. (22)

Therefore,

lim
t→∞

at+1 = lim
t→∞

st − 1

st+1

= lim
t→∞

st − 1

1+
√

1+4s2t
2

= lim
t→∞

(st − 1)(
√
1 + 4s2t − 1)

2s2t

= lim
t→∞

(
1− 1

st

)(√
1

4s2t
+ 1− 1

2st

)
= 1 (23)

holds.
Lemma 1 shows that the range of the inertial parameter

at+1 is 0 ≤ at+1 < 1 in the original FISTA. Fig. 1 shows
the transition of the inertial parameter at+1. From Fig. 1,
we can see that the inertial parameter at+1 actually increases
monotonically in the range from 0 to 1. From the above
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Fig. 1: Inertial parameters of the original FISTA

Algorithm 4 CIFISTA

Require: γ > 0, 0 ≤ c ≤ 1, z0 = x0 ∈ CN .
t = 0
repeat

ut+1 = zt − γAH(Azt − y)
xt+1 = Tγλ(ut+1)
zt+1 = xt+1 + c(xt+1 − xt)
t = t+ 1

until convergence;

discussion, we set the range of the constant inertial parameter
c to 0 ≤ c ≤ 1 in this paper.

The proposed algorithm named constant inertial FISTA
(CIFISTA) is shown in Algorithm 4. Note that CIFISTA is
equivalent to ISTA in the complex domain when c = 0.

IV. COMPUTER SIMULATIONS

In this section, we evaluate the number of iterations for the
convergence of the proposed CIFISTA and the optimal value
of c for various situations by computer simulations.

A. Simulation Settings

The nonzero components of the complex sparse unknown
vectors x∗ ∈ CN are assumed to follow an independent
and identically distributed (i.i.d.) circularly symmetric complex
Gaussian distribution with mean 0 and variance 1. The number
of nonzero components of x∗ is K (K ≤ M ). Each element
of noise vector e ∈ CM is assumed to be an i.i.d. circularly
symmetric complex Gaussian noise with mean 0 and variance
σ2
e. Let σ2

x∗ be the variance of each component of x∗, and
define the signal to noise ratio (SNR) as

10 log10
σ2
x∗

σ2
e

= 10 log10
K

Nσ2
e

. (24)

The initial values of FISTA and CIFISTA are x0 = 0 and
z0 = 0. In the simulations, we have judged the convergence
is achieved when

1

N
∥xt−i − xt−1−i∥22 < 10−14, i = 0, 1, 2, 3 (25)

is satisfied.

B. Simulation Results for Partial DFT Measurement Matrix

Since the optical circuit is suitable for computing the
product of a discrete Fourier transform (DFT) matrix and a
vector, this section evaluates the performance when a partial
DFT matrix is used as the measurement matrix A ∈ CM×N .
The parameter γ must satisfy

0 < γ ≤ 1

λmax(AHA)
(26)

for the convergence of FISTA in the complex domain. Since
A is a partial DFT matrix, AAH is the identity matrix
and its eigenvalues are all 1. From the fact that the non-
zero eigenvalues of AHA coincide with those of AHA, the
eigenvalues of AHA are 0 or 1. Therefore, λmax(A

HA) = 1
and hence the original FISTA converges when 0 < γ ≤ 1.

In the simulations, we consider different settings in Table
I. In settings 2–7, one variable is changed from setting 1 as
follows:

- setting 2: N = 250
- setting 3: M = 400
- setting 4: K = 50
- setting 5: λ = 0.008
- setting 6: γ = 0.099
- setting 7: SNR is 25 dB.
In this section, we first evaluate the performance of CIFISTA

for various values of the constant inertial parameter c. We
then obtain the best value of c that minimizes the number of
iterations for the convergence for various sparsity ratios and
measurement ratios.

1) Performance for Various Values of c: We have compared
the performance of CIFISTA for several values of the constant
inertial parameter c. In Fig. 2, we show the mean squared error
(MSE)

1

N
∥xt − x∗∥22 (27)

at each iteration of CIFISTA and FISTA for setting 1. Fig. 2
shows that the number of iterations for the convergence
depends on the value of the constant inertial parameter c. We
can also see that the MSE at the convergence of CIFISTA is
the same as that of FISTA.

For setting 1, cbest = 0.64599 is the best value of c in terms
of the number of iterations for the convergence. The MSE at
each iteration with c = cbest = 0.64599 is shown in Fig. 3.
The figure shows that CIFISTA can achieve almost the same
performance as the original FISTA if the value of the constant
inertial parameter c is appropriately determined.

2) Performance for Other Settings: To evaluate the perfor-
mance of CIFISTA for different settings, we compute cbest for
settings 2–7 via simulations. The results are shown in Table
I. Table I shows that cbest’s for settings 2–7 are different from
cbest for setting 1, indicating that cbest depends on the values
of N，M，K，λ，γ，and SNR.

Fig. 4 shows the MSE at each iteration of CIFISTA with cbest
and FISTA for settings 2–7. From the figure, we can see that
CIFISTA can achieve almost the same performance as FISTA
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TABLE I: Settings in simulation

N M K λ γ SNR [dB] cbest
setting 1 500 200 25 0.020 0.990 15 0.64599
setting 2 250 200 25 0.020 0.990 15 0.54765
setting 3 500 400 25 0.020 0.990 15 0.45464
setting 4 500 200 50 0.020 0.990 15 0.75984
setting 5 500 200 25 0.008 0.990 15 0.80808
setting 6 500 200 25 0.020 0.099 15 0.87255
setting 7 500 200 25 0.020 0.990 25 0.53745
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CIFISTA(c=0.6)

CIFISTA(c=0.8)

CIFISTA(c=1)
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Fig. 2: MSE at each iteration of CIFISTA and FISTA
for setting 1
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M
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CIFISTA(c=0.64599)

FISTA

Fig. 3: MSE at each iteration of CIFISTA and FISTA
with cbest of setting 1

if the value of the constant inertial parameter c is appropriately
chosen according to the setting.

3) cbest for Various Sparsity Ratios and Measurement Ra-
tios: We have evaluated cbest for various values of sparsity
ratio, measurement ratio, and SNR. We set λ = λbest and
γ = 1/λmax(A

HA) × 0.99 = 0.99, where λbest is the value
that minimizes the MSE at convergence. The sparsity ratio is
the fraction of non-zero components of the complex sparse
unknown vector x∗ and is defined as K/N . The measurement
ratio is the ratio of the number of rows to the number of
columns in the measurement matrix A, defined as M/N [8].
In the simulations in this section, we set N = 500.

First, λbest was obtained by simulation for various sparsity
and measurement ratios. Fig. 5 shows the four results for SNRs
of 10 dB, 15 dB, 20 dB, and 25 dB. From Fig. 5, we can see

that λbest increases as the SNR decreases, i.e., as the noise
power increases. This is because the measurement y becomes
unreliable as the noise power increases. In such a case, the
data fidelity term 1

2∥Ax − y∥22 in the objective function of
the optimization problem (2) does not work well, and hence
the estimation accuracy is better when more weight is given
to the regularization term ∥x∥1.

Fig. 6 shows the value of cbest for various sparsity ratios
and measurement ratios obtained by simulation. From Fig. 6,
cbest varies in a layered manner, and it can be seen that cbest
becomes smaller as the measurement ratio value increases and
the sparsity ratio value decreases. Furthermore, regardless of
the SNR, cbest is almost the same when the sparsity ratio is
small and the measurement ratio is large.

C. Simulation Results for i.i.d. Gaussian Measurement Matrix

We evaluate the performance of CIFISTA for the i.i.d.
Gaussian measurement matrix with mean 0 and variance 1/N .
The values of the parameters λ and γ are selected as λ = λbest
and γ = 1/λmax(A

HA) × 0.99. cbest is obtained for various
values of sparsity ratio, measurement ratio, and SNR. In the
simulations in this section, we set N = 500.

Fig. 7 shows the value of λbest for various sparsity ratios
and measurement ratios at SNR of 10 dB, 15 dB, 20 dB, and
25 dB obtained by simulation. From Fig. 7, we can see that
λbest increases as the SNR decreases. Comparing with Fig. 5,
we can see that the values are almost the same. In other words,
λbest is almost the same when the measurement matrix is the
partial DFT matrix and the i.i.d. Gaussian matrix.

Fig. 8 shows the value of cbest for various sparsity ratios
and measurement ratios at SNRs of 10 dB, 15 dB, 20 dB,
and 25 dB obtained by simulation. The figure shows that cbest
is almost the same when the sparsity ratio is small and the
measurement ratio is large, regardless of the SNR. Compared
to the case with the partial DFT matrix in Fig. 6, cbest is larger
for the i.i.d. Gaussian measurement matrix.

V. CONCLUSIONS

In this paper, we have proposed CIFISTA as a compressed
sensing algorithm appropriate for the implementation in op-
tical circuits. Unlike FISTA, which involves the division by
dynamic variables to update inertial parameters, CIFISTA has
constant inertial parameters and is therefore considered to be
suitable for execution in optical circuits, where division by
dynamic variables is hard to realize. Simulation results show
that the appropriate value of the constant inertial parameter in
CIFISTA depends on the value of the other parameters such
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Fig. 4: MSE at each iteration of CIFISTA and FISTA
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Fig. 5: λbest for various sparsity ratios and measurement ratios
(A：partial DFT matrix)

as the sparsity and the measurement ratio. When we use the
appropriate value of the constant inertial parameter, CIFISTA
can achieve almost the same performance as the original
FISTA. From the results, we also observe that the appropriate
value of the constant inertial parameter also depends on the
structure of the measurement matrix A. Future work includes
the investigation of soft thresholding functions suitable for the
computation in optical circuits, the theoretical evaluation of
the order of convergence for CIFISTA, and the proper choice
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Fig. 6: cbest for various sparsity ratios and measurement ratios
(A：partial DFT matrix)

of the constant inertial parameter.
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Fig. 7: λbest for various sparsity ratios and measurement ratios
(A：i.i.d. Gaussian matrix)
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Fig. 8: cbest for various sparsity ratios and measurement ratios
(A：i.i.d. Gaussian matrix)
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