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Abstract—Although deep learning has shown success in the
domain of speech enhancement, there is still much research
that can be undertaken in finding alternative loss functions to
train the speech enhancement models. An approach is to utilise
features in objective quality metrics, which aim to judge the
quality of enhanced or transmitted speech, as part of the loss
function. One such objective quality metric utilises perceptual
quality dimensions, which identify perceptual quality features
that can be derived from the signal and have shown to contribute
to perceptual speech quality. In this study, we investigate two
such features, cepstrum statistics and MFCC statistics, to be used
alongside a baseline loss function for a DNN speech enhancement
method. The results from experimentation show that addition of
cepstrum statistics to the loss function is detrimental to the scores
of objective quality metrics compared to a baseline loss function,
however using MFCC statistics in the loss function improves
speech quality scores.

I. INTRODUCTION

With the advent of machine learning, there have been
many interesting and effective methods of speech enhancement
which have shown to outperform traditional speech enhance-
ment methods, especially under more adverse conditions such
as under non-stationary noise or reverberation. However, there
is still much that could be done to further improve the quality
of these speech enhancement methods to increase speech
quality.

One such improvement is to develop better objective func-
tions that are utilised to train the speech enhancement models.
Many recent speech enhancement methods aim to reduce the
L1-loss or Mean-Squared Error (MSE) between the estimate
and true speech waveforms or spectrograms. However, previ-
ous studies have shown that these typical objective functions
may not accurately reflect human perception of speech quality
[1], [2], [3], [4]. Several studies have investigated the use
of alternative loss functions, for example, using perceptual
correlates such as bark spectral distortion [2] or weighting
filters based on code-excited linear prediction [5]. Additionally,
other studies have investigated the use of objective signal
evaluation metrics in the loss function, such as the perceptual
evaluation of speech quality (PESQ) [6], [7], [8], [9], short-
time objective intelligibility (STOI) [1], [7], [10], [11], [12],
or scale-invariant signal-to-distortion ratio (SI-SDR) [4]. These
studies show the potential in using perceptually motivated loss
functions to improve the quality of enhanced speech. Whilst

perceptually motivated speech enhancement techniques have
been proposed previously, especially for traditional speech
enhancement methods, using objective quality metrics in the
loss function have recently shown to be effective. However,
such as in the case of PESQ, the use of objective quality
metrics for a loss function has its challenges, such as the
algorithms being complex or non-differentiable, the latter of
which making it impossible for back-propagation to occur [6].

As such, there is a motive to investigate simpler and more
transparent designs for a perceptually motivated loss function
in speech enhancement. In order to do so, it is essential to know
which perceptual ”features” can reflect speech quality. Previ-
ous studies have aimed to find important perceptual features
that can be extracted from the clean and degraded/enhanced
waveforms that in turn can be used to objectively evaluate
the quality of speech [13], [14], [15], [16]. These features
were then used to create a speech quality objective metric
that aims to provide diagnostic information on a specific
speech quality score. Through a series of perception tests, these
studies have identified perceptual quality features that make a
significant contribution in both the judging of speech quality
and are related to how a listener can perceive quality using
multidimensional analyses. Resulting from this research, four
perceptual quality dimensions have been identified - noisiness,
discontinuity, colouration and loudness. Each of these quality
dimensions is comprised of further sub-dimensions, which
in turn are functions of several perceptual features that can
be extracted from the speech. Although this research was
intended for speech degraded by transmission over communi-
cation channels, many objective quality metrics have shown to
correlate well to speech quality in both the transmitted speech
and speech enhancement domains [17], [18].

Although these perceptual features were originally com-
bined with one another to judge speech quality, it is yet to be
discovered if they can work alongside typical loss functions
used for speech enhancement to further improve the quality
of enhanced speech. In this study, we investigate the use of
quality features that were identified to be used as part of the
perceptual quality dimensions, as part of the training target to
train a speech enhancement model. In particular, we investigate
statistical features that were identified to be related to the
colouration of speech (defined in [14]), namely the cepstral
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statistics and the standard deviation of the Mel-Frequency
Cepstral Coefficients (MFCCs). We use DEMUCS [19] as
the test case of speech enhancement algorithm, and add the
features to the loss function to determine if the quality of
enhanced speech can be further improved.

II. PERCEPTUAL QUALITY FEATURES

This section describes the perceptual quality features utilised
in this study and the loss functions derived from these features.

A. Cepstrum Statistics

Traditionally, the complex cepstrum has been used in many
speech applications such as echo detection [20], speech synthe-
sis [21], and glottal source estimation [22]. However, statistics
related to the complex cepstrum have also been used in speech
quality estimation [13], [23]. Following [24], the complex
cepstrum C of an arbitrary signal x(t) can be calculated by
the inverse Fourier transform of the complex logarithm of the
Fourier transform of x(t), i.e,

C(x(t)) =
1

2π

∫ −π

π

log[X(ejw)]ejωt dω, (1)

where X(ejω) denotes the Fourier transform of x(t) at time t.
To calculate the cepstrum statistics from the cepstrum, firstly

the cepstrum for each 10 ms frame of the speech signal is
obtained, then the standard deviation (σ) and kurtosis (α4)
are calculated from the cepstrum of each frame. However, in
creating the loss function, the aim is to minimise the statistical
difference between the cepstrums of the source and enhanced
signals. As such, the cepstrum standard deviation loss (CEP-
STD) and cepstrum kurtosis loss (CEP-KRT) are defined as
the standard deviation and kurtosis of the difference of the
cepstrums, as follows,

LCEP−STD(y, ŷ) = σ(C(y)− C(ŷ)) (2)

LCEP−KRT(y, ŷ) = α4(C(y)− C(ŷ)), (3)

where y denotes the clean signal in the time domain, ŷ denotes
the enhanced signal in the time domain and C represents the
complex cepstrum described by (1). For brevity, y and ŷ are
assumed to be equivalent to y(t) and ŷ(t), respectively.

B. MFCC Standard Deviation

Mel Frequency Cepstral Coefficients (MFCCs) have also
been used in speech processing applications, such as speaker
recognition [25], emotion recognition [26], and speech syn-
thesis [27]. MFCCs are extracted from a speech signal x(t)
by first passing Fourier transformed speech frames through a
mel-filter bank containing M triangular mel weighting filters
to obtain the mel spectrum sx(m), for each mel weighting filter
m. The MFCCs are then calculated by applying the discrete
cosine transform (DCT) to the mel spectrum as follows,

Fx(n) =

M−1∑
m=0

log(sx(m)) cos

(
πn(m− 0.5)

M

)
(4)

n = 0, 1, 2...P − 1,

where Fx(n) is the MFCCs of order n, and P is the number
of MFCCs. MFCCs are calculated for each 30 ms frame with
a 50% overlap. The standard deviations of each coefficient
are calculated for the entire utterance, then the mean of all
the standard deviations are calculated. In the case of the loss
function, as both the source and enhanced signals need to be
considered, the MFCC standard deviation loss (MFCC-STD)
is defined as follows,

LMFCC−STD(y, ŷ) =

∑P
n=1 σ(Fy(n)− Fŷ(n))

P
, (5)

where y denotes the clean signal in the time domain, ŷ denotes
the enhanced signal in the time domain and F represents the
MFCCs of the n-th coefficient described by (4).

We investigate both 5th order and 20th order MFCCs,
hence two loss functions are investigated, MFCC-STD (5) and
MFCC-STD (20). Additionally, we also investigate calculating
the standard deviations of the MFCCs acquired only from
active frames (MFCC-STDa) against just taking the standard
deviations of the MFCCs acquired from the entire utterance.

III. EXPERIMENTS

A. Experimental design

The proposed loss functions are not tied to any specific
speech enhancement algorithm, but as a test case, we use
DEMUCS [19], a music source separation architecture that was
adopted for speech enhancement that can work in real-time.
It consists of a multi-layered convolutional encoder network
followed by a multi-layered convolutional decoder network
with U-Net [28] skip connections. The encoder network op-
erates on the raw waveform as an input, and each i-th layer
in the encoder network outputs a latent representation to its
corresponding i-th layer in the decoder network. In the case
of the causal model, a uni-directional long short-term memory
(LSTM) is used for sequence modelling and connects the
encoder and decoder network. Finally the decoder network
decodes the latent representation to the estimated waveform.

All models were trained on the Valentini dataset [29]
consisting of 28 speakers with 11,572 utterances, with a test
set consisting of two speakers with 814 utterances. Speakers
286 and 287 from the training set were used to form the
validation set, and thus were excluded from the training set.
All utterances were downsampled to 16 kHz from 48 kHz. The
hyperparameters were set as, H (number of hidden channels) =
48, K (layer kernel size) = 8, S (stride) = 4, and U (resampling
factor) = 4. As in the original study [19], the Adam optimiser
[30] was used with a step size of 3e-4, β1 = 0.9 and β2 =
0.999.
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(a) CEP-STD

(b) CEP-STD-KRT (γ1 fixed)

(c) MFCC-STD (5)

(d) MFCC-STD (20)

Fig. 1: Optimisation of weights γ1−γ4 on the validation set for
the models (a) CEP-STD, (b) CEP-KRT (with CEP-STD fixed
a 0.01), (c) MFCC-STD, 5 coefficients, (d) MFCC-STD, 20
coefficients. The scores at a weight of 0 represent the baseline
(L1 Waveform) model.

A baseline model was created using the L1 loss of the
waveform, defined in [19] as

Lwaveform(y, ŷ) =
1

T
||y − ŷ||1, (6)

where y and ŷ represent the reference and enhanced speech

waveforms, respectively, T represents the duration of the
speech waveforms in samples, and || · ||1 represents the L1

norm. The test models used the losses described in Section
2 along with the L1 loss of the waveform at added specific
weights γ. As a result, four models were created using the
following loss functions:

CEP-STD: Lwaveform + γ1 · LCEP−STD (7)
CEP-STD-KRT: Lwaveform + γ1 · LCEP−STD

+ γ2 · LCEP−KRT (8)
MFCC-STD (5): Lwaveform + γ3 · LMFCC−STD; P = 5 (9)
MFCC-STD (20): Lwaveform + γ4 · LMFCC−STD; P = 20

(10)

where P is the MFCC order. The models were trained to
400 epochs, with validation testing occurring every 10 epochs,
in which PESQ scores were also obtained on the validation
test. The final model after the 400 epochs is the model which
obtained the lowest validation loss.

B. Active frame detection

For the CEP-STD and CEP-STD-KRT models, the cepstrum
standard deviation and cepstrum kurtosis were calculated from
the frames where speech was deemed active using a voice
activity detector (VAD). To distinguish active and inactive
frames, the power spectral density of the clean signal was
calculated for each frame, and frames above a threshold of
0.0002 were classified as active frames. The MFCC-STD (5)
and MFCC-STD (20) models used MFCCs calculated from all
frames, however we also investigated the effect of creating the
MFCC-STD (5) and MFCC-STD (20) models using MFCCs
calculated from only the active frames. These models are
referred to as MFCC-STDa (5) and MFCC-STDa (20).

C. Loss-function weight optimisation

For loss functions consisting of multiple components in the
loss, it is important to assign a weighting factor to each compo-
nent of the loss function to optimise results. Therefore a grid-
search was used to obtain optimised weights for the models.
For the grid search, models were trained on a smaller database
containing the first eight speakers of the Valentini database.
The models were trained to 50 epochs, with validation testing
every 10 epochs. The weight for the L1 Waveform loss was
fixed to one, then the additional loss component was added
to the L1 Waveform loss at a differing weight γ. The weight
which obtained the best PESQ result after the grid search was
used to train the network on the full dataset. In the case of the
CEP-STD + CEP-KRT, the best performing weight was chosen
for the CEP-STD component first, and subsequently the CEP-
KRT weight was iterated with the grid search. For each model,
two grid-searches were run, the first search providing a rough
estimate of the weights, and the second for a more precise
estimate of the weights.

The average PESQ scores after the second (precise) grid
search is shown in Fig. 1, alongside their 95% confidence
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TABLE I: Mean objective results on the test set for each model. Bold signifies a significant difference compared to the baseline
model (L1 Waveform). For the MFCC-STD (20) and MFCC-STDa (20) models, underline represents a significant difference
against their respective MFCC-STD (5) models. A higher score represents higher objective quality.

WB-PESQ ViSQOL NISQA CSIG CBAK COVL

L1 Waveform (Baseline) 2.47 3.19 3.66 3.77 3.18 3.12
CEP-STD 2.44 3.15 3.59 3.62 3.16 3.01
CEP-STD-KRT 2.27 3.16 3.44 3.35 3.10 2.80
MFCC-STD (5) 2.52 3.19 3.52 3.76 3.15 3.13
MFCC-STD (20) 2.63 3.20 3.71 3.89 3.21 3.25
MFCC-STDa (5) 2.51 3.20 3.56 3.74 3.18 3.12
MFCC-STDa (20) 2.57 3.20 3.74 3.84 3.20 3.19

intervals. Also included in each plot is the mean PESQ score
for the model trained in the same manner with just the
baseline L1 Waveform loss, along with its corresponding 95%
confidence interval. It should be noted that unlike the result
from both MFCC-STD (5) and MFCC-STD (20) searches,
which shows a local maximum PESQ value in the search, the
CEP-STD and CEP-STD + CEP-KRT searches resulted in a
higher PESQ scores as the weights approach zero. The highest
scoring weight for the CEP-STD model obtained a mean PESQ
score of 2.21 with a 95% confidence interval of ±0.033, which
is only marginally higher than the baseline PESQ score of
2.18 with a 95% confidence interval of ±0.032 and thus is not
significantly different. Additionally, the highest scoring CEP-
STD-KRT model obtained a mean PESQ score of 2.07 with a
95% confidence interval of ±0.032, which is significantly lower
than the baseline PESQ score suggesting the best weights for
the CEP-STD-KRT model is 0. However, we decided to use
the best performing weight from the grid-search to investigate
the effect of the CEP-KRT loss on the overall quality. From
this search, weights γ1 = 0.01, γ2 = 0.00005, γ3 = 0.007 and
γ4 = 0.03 were selected for the CEP-STD, CEP-KRT, MFCC-
STD (5), and MFCC-STD (20) weights, respectively. For the
MFCC-STDa models, the same weights that were used for the
MFCC-STD models were used, i.e., γ3 for the MFCC-STDa
(5) and γ4 for the MFCC-STDa (20) models.

D. Objective evaluation

The quality of the enhanced speech was evaluated using
several objective metrics. We utilised:

(i) WB-PESQ: Wide-band Perceptual Evaluation of Speech
Quality [31]

(ii) ViSQOL: Virtual Signal Quality Objective Listener [32]
(iii) NISQA: Non-Intrusive Speech Quality Assessment [33]
(iv) CSIG, CBAK, COVL: Predicted measures of the signal

distortion of the speech signal, intrusiveness of the background
noise and overall MOS prediction, respectively [17].

IV. RESULTS

Table I shows the results of the objective metrics for the
models tested, where bold numbers represent cases which
are significantly different to the baseline (L1 Waveform), and
underlined numbers for the MFCC-STD (20) and MFCC-STDa
(20) models represent cases which are significantly different to

their respective MFCC-STD (5) and MFCC-STDa (5) models.
In both cases, significance was calculated through paired t-
tests in R, with p-values < 0.05 considered significant, and
with a Bonferroni correction due to the number of pairs being
compared.

The model created with MFCC-STD (20) loss showed im-
provements over the baseline in all objective metrics, with sig-
nificantly higher PESQ, CSIG and COVL scores. Additionally,
the model created with MFCC-STD (5) loss showed no signif-
icant difference compared to the baseline apart from NISQA,
in which it performed lower than the baseline. Comparing
5 and 20 coefficient models, we can observe that objective
scores increase as the number of coefficients increase for all
objective metrics and paired t-tests between these models show
the differences are significant for all metrics except ViSQOL
for the MFCC-STD models, and differences are significant
for NISQA, CSIG and COVL for the MFCC-STDa models.
Paired t-tests were also conducted to compare MFCC-STD
models created with all frames to just active frames. However,
there was no significant difference between the MFCC-STD
and MFCC-STDa models in terms of all the objective metrics
for both the 5 and 20 coefficient models.

For the cepstrum statistics losses, adding CEP-STD to the
baseline loss resulted in little difference compared to the
baseline in all objective metrics apart from NISQA, CSIG and
COVL, in which it obtained lower average scores compared
to the baseline, and the addition of both CEP-STD and CEP-
KRT losses to the baseline loss performs significantly worse
than the baseline in all metrics.

Following the grid search results shown in Fig. 1, which
shows that PESQ scores increase as the CEP-STD and CEP-
KRT weights decrease, these results confirm that the addition
of CEP-KRT losses at any weight performs lower than the
baseline is therefore detrimental to the speech quality, with
quality decreasing with increasing weight.

Spectrograms of a sentence which was typical of the test
set are shown in Fig. 2, along with their corresponding PESQ
scores. We can observe that the MFCC-STD model is more
effective in reducing noise than the baseline, and the CEP-STD
model is similar in reducing noise than the baseline. However,
artefacts appear shown by the horizontal lines in the spectrum
in the case of CEP-STD, and this effect is worse for the CEP-
STD-KRT model. This suggests that the added artefacts may
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(a) Clean (b) Noisy (PESQ = 2.12)

(c) Baseline (PESQ = 2.64) (d) MFCC-STD (20)
(PESQ = 2.93)

(e) CEP-STD (PESQ = 2.73) (f) CEP-STD-KRT
(PESQ = 2.20)

Fig. 2: Spectrograms of a utterance from the test set for: (a)
clean speech, (b) noisy speech, (c) L1 Waveform baseline
model, (d) MFCC-STD, 20 coefficients, (e) CEP-STD, (f)
CEP-STD + CEP-KRT.

be a major cause for the lower objective scores observed in
the CEP-STD and CEP-STD-KRT models.

V. CONCLUSION

This study investigated the use of two identified percep-
tual quality features, cepstrum statistics and MFCC standard
deviation, as part of a loss function in a speech enhancement
algorithm to improve the quality of resultant enhanced speech.
The experimental results indicate that the addition of MFCC
standard deviation in the loss function is able to significantly
improve speech quality compared to just L1 waveform loss,
scoring significantly higher than the baseline in three of the
objective metrics and scoring comparably to the baseline in
the other three objective metrics. However, the addition of
cepstrum statistics were detrimental to speech quality, with
the CEP-STD model scoring significantly worse in three of
the objective metrics, and the CEP-STD-KRT model scoring
significantly worse in five of the objective metrics. As there
are many perceptual quality features that have been identified
in the literature, future work will include running a subjective
listening test, the testing of other perceptual quality features,
as well as testing on other speech enhancement architectures.
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