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Abstract—In this paper, we propose to use the temporal auto-
correlation of single-channel speech as a new feature for replay
detection. Visual comparisons show that the proposed feature
distinguishes replay attacks from clean speech and speech with
simulated reverberation. Experimental results on the ASVspoof
2019 physical access database show that the proposed feature
contains crucial information against replay attacks and that using
the proposed feature in a fusion system almost always leads to
performance improvements. Furthermore, our best fusion system
achieves equal error rate and minimum tandem detection cost
function of 0 on the development set for the first time.

I. INTRODUCTION

Replay detection has been greatly improved with the help of
deep learning technology over the past few years [1]–[4]. In the
Automatic Speaker Verification Spoofing and Countermeasures
Challenge (ASVspoof) in 2017 [2] and 2019 [3], [4], it
was shown that appropriate neural network architectures can
effectively construct countermeasures against replay attacks.
Various studies have shown that replay detection systems that
use time-frequency representation of speech as input feature
perform better than systems that use single frames as input
feature. In these state-of-the-art systems, correlations between
speech features and replay attacks are found in time-frequency
representations, which are not visible in a single frame [5], [6].

Replay attacks are a convenient way to bypass authentication
by exploiting vulnerabilities in Automated Speaker Verification
(ASV) systems. Since 2017, ASVspoof has introduced replay
attacks in the challenge [2]. In 2019, the challenge was further
divided into the logical access scenario, including spoofing
attacks generated by speech synthesis and voice conversion,
and the physical access scenario, including replay attacks using
simulated replay speech [3]. In contrast to speech synthesis and
voice conversion, which require adjusting the model to mimic
the voice of a known target speaker as closely as possible,
replay attacks can attack ASV systems by simply replaying
the target speaker’s voice [4].

The classical way to detect replay attacks is to use the
Gaussian mixture models (GMMs). GMM-based replay de-
tection systems can be found in the baseline systems of
ASVspoof2017 [2] and ASVspoof 2019 [3]. These systems
use GMMs to evaluate whether a single frame from the time-
frequency representation of speech contains a replay attack,
and then averages the results across all frames to determine

whether the speech is a replay attack. However, such com-
putation leads to loss of temporal information because the
replay attack detection of these GMM-based systems does not
consider the temporal information of speech features.

Replay detection systems built using deep learning models
have achieved breakthrough performance growth in recent
years [5]. It was observed in ASVspoof 2019 that signifi-
cant performance gains were obtained with the help of deep
learning techniques for replay detection compared to GMM-
based systems [3], [4]. These advanced deep learning models
for replay detection are based on ResNet model [5]–[7] or
light convolutional neural network (LCNN) [8], [9] architec-
tures, which share a common structure of employing two-
dimensional convolutional layers to extract and detect replay
attack trajectories in time-frequency representations of speech.
These models have demonstrated their effectiveness in building
countermeasures against replay attacks [5]–[9].

Time-frequency representation refers to the signal represen-
tation into which speech is processed before replay detection
using GMM-based systems or most deep learning model-
based systems. In general, the time-frequency representation
of speech can be categorized into magnitude time-frequency
representation and phase time-frequency representation. Ex-
amples of magnitude time-frequency representation include
spectrogram, linear frequency cepstral coefficients (LFCCs)
[9]–[11] and constant Q cepstral coefficients (CQCCs) [12],
[13], and examples of phase time-frequency representation
include modified group delay (MGD) [5], [6] and product
spectrum cepstral coefficients (PSCCs) [14]. Researchers have
effectively exploited their application in replay detection via
deep learning models [5], [6], [9], [14].

Score fusion is a simple and effective method for building
valid countermeasures against replay attacks [4]. Among the
systems using GMMs or deep learning models combined
with different time-frequency representations, each provides
different insights for replay detection. To do so, each system
calculates a score for the given test utterance; and by exploiting
the strength of each countermeasure while complementing
the weaknesses, these scores are fused to create a fusion
countermeasure. Significant performance improvements are
observed in state-of-the-art replay detection systems with the
help of score fusion [6], [9].
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In this paper, we propose a novel feature for replay detec-
tion based on the computation of temporal autocorrelation in
weighted prediction error (WPE) dereverberation [15]–[17]. In
our experiments, we first implemented a state-of-the-art system
for the ASVspoof 2019 physical access scenario [9]. We
then examined the proposed feature from various aspects by
comparing performance of single systems and fusion systems
using different speech features. Experimental results confirm
the contribution of the proposed feature in fusion systems.
Furthermore, using the proposed feature and through score
fusion, our best fusion system is able to reduce the equal error
rate (EER) and minimum tandem detection cost function (min-
tDCF) to 0 on the development set for the first time.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews related studies on replay detection. Section 3
describes the proposed feature. Section 4 presents the experi-
ments, results and discussion. Finally, Section 5 provides our
concluding remarks.

II. RELATED WORK

Replay detection systems consist of classifiers and speech
features. In this section, we review classifiers and speech
features for replay detection.

A. Classifiers

1) Gaussian Mixture Model: GMM-based classifiers are
a classical approach to build replay detection systems [2],
[3], [12]. The classical approach is to determine the replay
detection result by the likelihood of the given test utterance
containing a replay attack and the likelihood of the given test
utterance not containing a replay attack. The score for the given
utterance is calculated as the ratio of two likelihoods [12],
and then is used to determine whether the utterance contains a
replay attack. Since the likelihood of the utterance is calculated
by averaging the likelihoods of all frames, the GMM does not
exploit the temporal information of speech features. Therefore,
we believe that such an architecture would result in limited
performance for replay detection.

2) Deep Learning Model: Classifiers based on deep learn-
ing models are state-of-the-art for building replay detection
systems [7]. Unlike GMM-based replay detection classifiers,
deep learning model-based replay detection classifiers gener-
ally only need one deep learning model to detect replay attacks
in speech, and most deep learning model-based classifiers
use the time-frequency representation of speech instead of
single frame as input feature [5]–[9]. It has been observed that
most deep learning model-based classifiers incorporate two-
dimensional convolutional layers in their deep learning model
architectures, while taking the time-frequency representation of
speech as the feature for the classifier. Comparison with GMM-
based classifiers, this architecture can leverage both the tempo-
ral and spatial information of the time-frequency representation
of speech to identify the association of specific regions in the
time-frequency representation with replay attacks [5], [6].

B. Speech Features

1) Magnitude: Magnitude information is a classical feature
representation of speech for speech processing applications.
Most speech features are created using the Fourier transform,
where the speech waveform is transformed from real numbers
to complex numbers, i.e., the spectrum, and the magnitude
information of speech is the absolute value of the spectrum.
Various algorithms and techniques have been developed to ex-
ploit the magnitude information of speech for different speech
applications, such as spectral subtraction [18], [19] and Wiener
filtering [19], [20] for speech enhancement and Mel-frequency
cepstral coefficients (MFCCs) for speech recognition [21]. For
spoofed speech detection, LFCCs are classification robust to
any type of spoofing attack [9]–[11], and the spectrogram
computed with the constant Q transform (CQT) [13] exhibits
excellent performance in replayed speech detection [6]–[9].
In our previous study, we have shown that the cepstrogram
is another powerful feature for countermeasure against replay
attacks, which is also derived form the magnitude information
of speech [22].

2) Phase: Phase information is another feature representa-
tion of speech and is the argument of the spectrum. The phase
information of speech was considered unimportant in various
speech applications in the past, but has become an emerging
field in recent years [23]–[25]. Various techniques have been
applied to different speech applications to exploit the phase
information of speech for better results, such as group delay
[26] and product spectrum [27], [28] for speech recognition
and phase spectrum compensation for speech enhancement
[24], [29]. For spoofed speech detection, group delay [5],
[6] and product spectrum [14] show excellent performance in
replay attack detection.

III. THE PROPOSED FEATURE

In this work, we propose a novel feature for replay detec-
tion based on the temporal autocorrelation of speech. In the
following, we describe the computation of the temporal auto-
correlation of speech and the method for feature construction.

A. Weighted Prediction Error

The general idea of WPE is to estimate the late reflections
of reverberant speech, and then subtract them from the rever-
berant speech to obtain a valid estimate of the early part of
the reverberant speech, which includes both direct speech and
early reflections of reverberant speech [15]–[17]. The signal
model applied in WPE is given as follow:

yc,t,f = xearly
c,t,f + xtail

c,t,f , (1)

where yc,t,f refers to the multi-channel reverberant speech
presented as complex spectrograms, c denotes the channel
index, t denotes the frame index, f denotes the frequency bin
channel, and xearly

c,t,f and xtail
c,t,f represent the early part and late

reverberation of the reverberant speech, respectively.
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The procedures for performing WPE on a reverberant speech
are given as follows:

λt,f =
1

(δ + 1 + δ)C

t+δ∑
τ=t−δ

∑
c

|xearly
τ,f,c |

2, (2)

Rf =
∑
t

ỹt−∆,f ỹ
H
t−∆,f

λt,f
, (3)

Pf =
∑
t

ỹt−∆,fy
H
t,f

λt,f
, (4)

Gf = R−1
f Pf , (5)

x̂early
t,f = yt,f − GH

f ỹt−∆,f , (6)

where x̂early
t,f refers to the estimation of clean speech, Gf

represents the prediction filter, and λt,f denotes the time-
varying variance.

B. Replay Detection With Temporal Autocorrelation of Speech

Figs. 1 and 2 present the spectrograms and the prediction fil-
ters of clean speech, bona fide trial, and spoofed trial. The bona
fide trial is the clean speech with simulated reverberation. The
spoofed trial is generated from the bona fide trial with replay
attacks. We use these two figures to show how simulated rever-
beration and replay attacks are revealed in the spectrogram and
prediction filters. The spectrogram of clean speech is blurred
by simulated reverberation, as shown in Fig. 1 (b), and further
smeared by replay, as shown in Fig. 1 (c). WPE is an effective
multi-channel dereverberation technique that reduces speech
recognition errors for reverberant speech [21]. Estimation of
prediction filters in WPE involves computing the temporal
autocorrelation of speech and the spatial autocorrelation of
audio channels at the same time. Since replay attacks form
reverberation in spoofed speech, we are inspired to use the
prediction filters, i.e., the temporal autocorrelation of speech,
as a feature for replay detection. The temporal autocorrelation
of speech in single-channel audio does clearly reveal replay
attacks, as shown in Fig. 2 (c).

Fig. 1. The spectrograms in the log1p (natural logarithm of (1 + input))
scale [30]: (a) the original clean speech sample p262 227 from VCTK [31],
(b) the bona fide trial PA D 0004063 with simulated reverberation, and (c)
the spoofed trial PA D 0024255.

Fig. 2. The prediction filters in the log1p (natural logarithm of (1 + input))
scale [30]: (a) the original clean speech sample p262 227 from VCTK [31],
(b) the bona fide trial PA D 0004063 with simulated reverberation, and (c)
the spoofed trial PA D 0024255.

1983



Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

IV. EXPERIMENTS AND RESULTS

Our experiments were conducted on the ASVspoof 2019
physical access scenario using models with the same LCNN
architecture but different features. We implemented the model
of the team T45 [9] in the ASVspoof 2019 challenge [3],
as this architecture showed its effectiveness against replay
attacks in ASVspoof challenge [4], [8], [9]. The configuration
of the dropout layers in the model is not specified in the
corresponding paper [9]. We only performed one dropout on
the flatten layer to prevent overfitting. For more details on our
implementation, please visit our repository1.

A. Baseline Systems

Table I shows the performance of Team T45’s systems
(upper four rows) and the performance of our self-implemented
systems (lower four rows). In our implementation, the speech
features used in LFCC-LCNN and CQT-LCNN are LFCCs
and CQT-based logarithmic power magnitude spectrogram
(CQTgram), which were obtained with the code from the
baseline system provided by the challenge organizer2, and
the default setting is used. This default setting was also used
in Team T45’s system [9]. LFCCs were extracted using a
Hamming window of 20 ms length, 512 FFT bins, and 20
filters. CQTgram was extracted with 96 bins per octave. The
speech feature used in DCT-LCNN was obtained with our
own code. We followed the configuration of Team T45’s DCT-
LCNN system; the magnitude spectrogram was extracted by
discrete cosine transform (DCT) with a Blackman window of
length 863 and frame shift of 128. For each single system
(CQT-LCNN, LFCC-LCNN, and DCT-LCNN), the model was
separately trained on the training set, selected based on the
results on the development set, and evaluated on the evaluation
set. The fusion system was achieved by summing the scores of
the single systems for each trial [9]. The results were presented
in terms of EER and min-tDCF [32], which are the metrics
used in the ASVspoof 2019 challenge [3]. From Table I,
we can see that the performance of our self-implemented
systems is comparable to or better than the performance of
the corresponding T45 systems.

B. Performance of Single Systems

Table II shows the performance of our implemented single
systems using different features. The first three systems are the
same as those in Table I. The speech features used in Spec-
LCNN and Spec1724-LCNN were magnitude spectrograms
extracted via fast Fourier transform (FFT) with different con-
figurations; Spec-LCNN used a Blackman window of length
1024 and frame shift of 128, and Spec1724-LCNN used a
Blackman window of length 1724 and frame shift of 128.
The speech features used in Ceps-LCNN and Ceps1724-
LCNN were cepstrograms [22] derived by DCT from the

1https://github.com/shihkuanglee/RD-LCNN
2https://www.asvspoof.org/asvspoof2019/ASVspoof 2019 baseline CM

v1.zip

TABLE I
PERFORMANCE COMPARISON OF TEAM T45’S SYSTEMS (REPORTED IN

[9]) AND OUR SELF-IMPLEMENTED SYSTEMS. ALL SYSTEMS WERE
IMPLEMENTED USING THE SAME LCNN ARCHITECTURE.

Dev Eval

System tDCF EER tDCF EER

CQT-LCNN [9] 0.0197 0.800 0.0295 1.23
LFCC-LCNN [9] 0.0320 1.311 0.1053 4.60

DCT-LCNN [9] 0.0732 3.850 0.560 2.06
Fusion [9] 0.0001 0.0154 0.0122 0.54

CQT-LCNN 0.0096 0.374 0.0130 0.514
LFCC-LCNN 0.0145 0.519 0.0299 1.061

DCT-LCNN 0.0385 1.444 0.0774 2.897
Fusion 0.0014 0.057 0.0048 0.165

TABLE II
PERFORMANCE OF SINGLE SYSTEMS USING DIFFERENT FEATURES. ALL

SYSTEMS WERE IMPLEMENTED USING THE SAME LCNN ARCHITECTURE.

Dev Eval

System tDCF EER tDCF EER

CQT-LCNN 0.0096 0.374 0.0130 0.514
LFCC-LCNN 0.0145 0.519 0.0299 1.061

DCT-LCNN 0.0385 1.444 0.0774 2.897
Spec1724-LCNN 0.0062 0.203 0.0263 0.917
Ceps1724-LCNN 0.0076 0.275 0.0191 0.712

Spec-LCNN 0.0148 0.556 0.0522 1.719
[22] Ceps-LCNN 0.0039 0.129 0.0105 0.370

TAC-LCNN 0.0863 3.152 0.1560 5.882

magnitude spectrograms used in Spec-LCNN and Spec1724-
LCNN, respectively. The temporal autocorrelation of speech
used in TAC-LCNN was calculated from a complex spectro-
gram, which was computed using the same configuration as
the spectrogram used in Spec-LCNN and Ceps-LCNN. We
used an open source implementation of WPE dereverberation
[17] to compute prediction filters as the speech feature. We
applied the parameter settings used in CHiME-6 [21] except
for the value of taps. Following the configuration in [21],
the delay was set to 2, the iterations was set to 3, the
psd_context was set to 0, the statistics_mode was
set to full, and the value of taps was extended from 10
to 16 to fit the LCNN architecture. The results in Table II
show that the TAC-LCNN single system using the temporal
autocorrelation feature performs worse than single systems
using other features. Although this result is disappointing, in
subsequent experiments, we will confirm that the temporal
autocorrelation feature, combined with other features, can
improve the performance of fusion systems.

C. Performance of Fusion Systems

Tables III and IV present the performance of our imple-
mented fusion systems. In Table III, the fusion systems com-
bined Spec-LCNN and/or Ceps-LCNN, while in Table IV, the
fusion systems combined Spec1724-LCNN and/or Ceps1724-
LCNN. We aimed to examine the proposed feature from
various aspects. All fusion systems used the same score fusion
strategy as the fusion systems in Table I. In Table III, because
the same windowing configuration for spectrogram extraction
was used in TAC-LCNN, Spec-LCNN, and Ceps-LCNN, the
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TABLE III
PERFORMANCE OF VARIOUS FUSION SYSTEMS INCORPORATING

TAC-LCNN.

Dev Eval
System tDCF EER tDCF EER

CQT 0.0096 0.374 0.0130 0.514
TAC+CQT 0.0088 0.349 0.0150 0.613

LFCC 0.0145 0.519 0.0299 1.061
TAC+LFCC 0.0068 0.312 0.0157 0.547

DCT 0.0385 1.444 0.0774 2.897
TAC+DCT 0.0179 0.682 0.0436 1.741

Spec 0.0148 0.556 0.0522 1.719
TAC+Spec 0.0099 0.353 0.0325 1.161

Ceps 0.0039 0.129 0.0105 0.370
TAC+Ceps 0.0032 0.127 0.0096 0.330

CQT+LFCC 0.0037 0.166 0.0079 0.283
TAC+CQT+LFCC 0.0026 0.111 0.0063 0.216

CQT+DCT 0.0048 0.205 0.0111 0.475
TAC+CQT+DCT 0.0032 0.168 0.0105 0.398

CQT+Spec 0.0021 0.131 0.0122 0.514
TAC+CQT+Spec 0.0024 0.109 0.0098 0.359

CQT+Ceps 0.0024 0.094 0.0043 0.149
TAC+CQT+Ceps 0.0017 0.057 0.0043 0.154

LFCC+DCT 0.0042 0.183 0.0089 0.321
TAC+LFCC+DCT 0.0022 0.109 0.0073 0.282

LFCC+Spec 0.0020 0.078 0.0076 0.289
TAC+LFCC+Spec 0.0017 0.076 0.0062 0.238

LFCC+Ceps 0.0030 0.109 0.0074 0.254
TAC+LFCC+Ceps 0.0017 0.057 0.0052 0.205

DCT+Spec 0.0120 0.499 0.0424 1.488
TAC+DCT+Spec 0.0079 0.275 0.0256 0.951

DCT+Ceps 0.0013 0.074 0.0066 0.242
TAC+DCT+Ceps 0.0014 0.057 0.0059 0.232

Spec+Ceps 0.0015 0.074 0.0067 0.260
TAC+Spec+Ceps 0.0010 0.041 0.0051 0.184

CQT+LFCC+DCT 0.0014 0.057 0.0048 0.165
TAC+CQT+LFCC+DCT 0.0009 0.057 0.0038 0.149

CQT+LFCC+Spec 0.0009 0.039 0.0045 0.177
TAC+CQT+LFCC+Spec 0.0011 0.037 0.0039 0.133

CQT+LFCC+Ceps 0.0022 0.074 0.0042 0.150
TAC+CQT+LFCC+Ceps 0.0016 0.059 0.0031 0.115

CQT+DCT+Spec 0.0029 0.168 0.0148 0.591
TAC+CQT+DCT+Spec 0.0019 0.113 0.0105 0.420

CQT+DCT+Ceps 0.0015 0.059 0.0034 0.128
TAC+CQT+DCT+Ceps 0.0008 0.039 0.0029 0.121

CQT+Spec+Ceps 0.0011 0.037 0.0038 0.155
TAC+CQT+Spec+Ceps 0.0008 0.037 0.0034 0.127

LFCC+DCT+Spec 0.0021 0.096 0.0073 0.320
TAC+LFCC+DCT+Spec 0.0009 0.057 0.0063 0.232

LFCC+DCT+Ceps 0.0012 0.039 0.0040 0.143
TAC+LFCC+DCT+Ceps 0.0004 0.022 0.0030 0.115

LFCC+Spec+Ceps 0.0008 0.037 0.0039 0.138
TAC+LFCC+Spec+Ceps 0.0003 0.017 0.0027 0.109

DCT+Spec+Ceps 0.0013 0.057 0.0078 0.304
TAC+DCT+Spec+Ceps 0.0009 0.052 0.0059 0.221

CQT+LFCC+DCT+Spec 0.0004 0.037 0.0041 0.171
TAC+CQT+LFCC+DCT+Spec 0.0005 0.037 0.0041 0.165

CQT+LFCC+DCT+Ceps 0.0008 0.052 0.0029 0.104
TAC+CQT+LFCC+DCT+Ceps 0.0003 0.033 0.0022 0.072

CQT+LFCC+Spec+Ceps 0.0004 0.022 0.0027 0.094
TAC+CQT+LFCC+Spec+Ceps 0.0002 0.017 0.0023 0.083

CQT+DCT+Spec+Ceps 0.0005 0.037 0.0047 0.166
TAC+CQT+DCT+Spec+Ceps 0.0004 0.033 0.0035 0.149

LFCC+DCT+Spec+Ceps 0.0003 0.017 0.0031 0.116
TAC+LFCC+DCT+Spec+Ceps 0.0001 0.004 0.0028 0.098

TABLE IV
RESULTS OF THE FUSION SYSTEMS WITH SPEC1724-LCNN &

CEPS1724-LCNN.

Dev Eval
System tDCF EER tDCF EER

CQT+LFCC+DCT+Spec1724 0.0002 0.017 0.0030 0.109
TAC+CQT+LFCC+DCT+Spec1724 0.0003 0.017 0.0028 0.105

CQT+LFCC+Spec1724+Ceps 0.0000 0.002 0.0019 0.077
TAC+CQT+LFCC+Spec1724+Ceps 0.0000 0.002 0.0016 0.055

CQT+DCT+Spec1724+Ceps 0.0002 0.017 0.0026 0.099
TAC+CQT+DCT+Spec1724+Ceps 0.0001 0.015 0.0025 0.095

LFCC+DCT+Spec1724+Ceps 0.0000 0.002 0.0022 0.093
TAC+LFCC+DCT+Spec1724+Ceps 0 0 0.0020 0.072

CQT+LFCC+DCT+Cpes1724 0.0017 0.074 0.0036 0.145
TAC+CQT+LFCC+DCT+Cpes1724 0.0011 0.057 0.0036 0.133

CQT+LFCC+Spec+Cpes1724 0.0007 0.039 0.0033 0.137
TAC+CQT+LFCC+Spec+Cpes1724 0.0006 0.035 0.0033 0.116

CQT+DCT+Spec+Cpes1724 0.0015 0.072 0.0070 0.293
TAC+CQT+DCT+Spec+Cpes1724 0.0010 0.070 0.0060 0.226

LFCC+DCT+Spec+Cpes1724 0.0007 0.037 0.0045 0.188
TAC+LFCC+DCT+Spec+Cpes1724 0.0006 0.041 0.0042 0.160

CQT+LFCC+Spec1724+Cpes1724 0.0006 0.022 0.0027 0.111
TAC+CQT+LFCC+Spec1724+Cpes1724 0.0003 0.033 0.0025 0.088

CQT+DCT+Spec1724+Cpes1724 0.0012 0.041 0.0052 0.203
TAC+CQT+DCT+Spec1724+Cpes1724 0.0008 0.037 0.0038 0.188

LFCC+DCT+Spec1724+Cpes1724 0.0007 0.033 0.0036 0.137
TAC+LFCC+DCT+Spec1724+Cpes1724 0.0005 0.022 0.0032 0.127

comparison of fusion systems with and without TAC-LCNN
is clear. From the table, we can see that almost every fu-
sion system with TAC-LCNN outperforms the corresponding
system without TAC-LCNN. Next, we examined whether
the combination of TAC-LCNN with systems with features
based on spectrograms extracted using different windowing
configurations is effective. From Table IV, we can see that
the combination of TAC-LCNN with Spec1724-LCNN and/or
outperforms its corresponding system without TAC-LCNN
in most cases. This result again confirms the contribution
of TAC-LCNN in fusion systems. In addition, it is worth
mentioning that this is the first time a fusion system (see
TAC+LFCC+DCT+Spec1724+Ceps) has achieved EER and
min-tDCF of 0 on the development set.

D. Comparison with State-of-the-Art Models

Table V compares the performance of several state-of-
the-art systems and our fusion systems on the ASVspoof
2019 physical access database. It is clear that all our fu-
sion systems with TAC-LCNN outperform the three state-
of-the-art fusion systems compared in this experiment. The
best performance on the evaluation set is achieved by the
“TAC+CQT+LFCC+Spec1724+Ceps” system, and the min-
DCF and EER are 0.0016 and 0.055, respectively. For the
development set, the best performance is achieved by the
“TAC+LFCC+DCT+Spec1724+Ceps” system, and the min-
DCF and EER are reduced to 0. Our fusion systems combining
the temporal autocorrelation feature achieve new state-of-
the-art performance on the ASVspoof 2019 physical access
database.
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TABLE V
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART SYSTEMS.

Dev Eval

System tDCF EER tDCF EER

T45-Fusion [9] 0.0001 0.0154 0.0122 0.54
T28-Fusion [6] 0.0049 0.20 0.0096 0.39

Res2Net-CQT+LFCC+Spec [7] 0.0028 0.096 0.0075 0.287

CQT+LFCC+DCT 0.0014 0.057 0.0048 0.165
TAC+CQT+LFCC+DCT 0.0009 0.057 0.0038 0.149

[22] CQT+LFCC+Spec+Ceps 0.0004 0.022 0.0027 0.094
TAC+CQT+LFCC+Spec+Ceps 0.0002 0.017 0.0023 0.083

CQT+LFCC+Spec1724+Cpes1724 0.0006 0.022 0.0027 0.111
TAC+CQT+LFCC+Spec1724+Cpes1724 0.0003 0.033 0.0025 0.088

CQT+LFCC+Spec1724 0.0005 0.017 0.0031 0.111
TAC+CQT+LFCC+Spec1724 0.0005 0.017 0.0027 0.099
CQT+LFCC+Spec1724+Ceps 0.0000 0.002 0.0019 0.077

TAC+CQT+LFCC+Spec1724+Ceps 0.0000 0.002 0.0016 0.055
CQT+LFCC+DCT+Spec1724+Ceps 0.0000 0.002 0.0018 0.066

TAC+CQT+LFCC+DCT+Spec1724+Ceps 0.0000 0.002 0.0016 0.061
LFCC+DCT+Spec1724+Ceps 0.0000 0.002 0.0022 0.093

TAC+LFCC+DCT+Spec1724+Ceps 0 0 0.0020 0.072

V. CONCLUSION

In this paper, a novel feature for replay detection using
temporal autocorrelation of single-channel speech is proposed.
The computation of WPE dereverberation inspired us to use
the prediction filters as the feature to detect replay attacks.
Visual comparisons show that the proposed feature distin-
guishes replay attacks from bona fide speech. Experimental
results show that all fusion systems incorporating the proposed
feature achieve performance improvements compared to the
corresponding systems without the proposed feature. One of
our fusion systems achieves EER and min-tDCF of 0 on
the development set of the ASVspoof 2019 physical access
database. To the best of our knowledge, this is the first time
a fusion model has achieved such a result. Our best fusion
model also achieves new state-of-the-art performance on the
evaluation set.
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