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Abstract—Radiofrequency ablation (RFA) of liver cancer un-
der computer tomography (CT) guidance is a minimally invasive
procedure in which CT images are utilized to guide the physician
in introducing the needle into the target lesion. However, the
adequate visualization of the needle and anatomy is hampered
by the 2D slide based-view used in the current clinical practice.
Thus, due to the lack of 3D information, the physician requires
high experience and more interaction with the guidance systems
to envision the needle’s position in the liver, which is inconvenient
in clinical practice. In this study, we propose a method for
robust needle segmentation using CT images to improve the
visualization of the needle during the intervention. The method
utilizes a convolutional neural network (CNN) to detect the needle
in orthogonal 2D projections of the CT image to construct the
needle volume of interest (VOI). Subsequently, a patch-based 3D
CNN is applied to segment the needle. We evaluate the method’s
accuracy using Dice score (DSC), Hausdorff distance (HD), the
needle shaft error Eshaft, and needle tip error Etip. The results
show that the proposed method achieves the means of DSC,
HD, Etip, Eshaft and processing time of 0.89, 3.3 mm, 0.9 mm,
0.43 mm, and 2.6 seconds, respectively. We conclude that the
proposed method is feasible for improving needle visualization
in the interventional room.

Index Terms—Liver tumors, RFA, needle segmentation, CT
guidance, projections, CNN

I. INTRODUCTION

Radiofrequency ablation (RFA) for liver cancer treatment is

an effective curative therapy at an early stage, especially for

patients unsuitable for operation indications [1]. In the RFA

procedure, an interventional physician inserts a needle into the

patient with the tip at the tumor to destroy the malignant tissue.

The needle delivers the radiofrequency waves (350–500 kHz)

directly to the surrounding tissue, leading to tissue necrosis

[2]. RFA is a minimally invasive procedure with a low risk

of death and low-risk complications during the treatment.

Moreover, RFA is a relatively quick, repeatable, and low-cost

procedure, and patients can be discharged in a few days after

the intervention [3].

Local tumor progression is a major factor limiting the

effectiveness of RFA for liver cancer treatment, with a reported

local recurrence rate ranging from 15 to 40% [4]. The success

of the technique decreases when treating the tumors of larger

than 3 cm since the tumors may be not covered within the

thermal ablation [2]. The local recurrence rate also increases

when performing RFA with the tumor abutting large vessels

(larger than 3 mm in diameter). These vessels may lead to

insufficient ablation, caused by the heat-sink effect of the

vessels [1], [4]. Thus, accurate needle placement is needed

to improve treatment efficiency, minimizing the limitation of

RFA.

RFA under CT guidance is frequently used for liver cancer

treatment since CT images provide adequate information on

the needle position [5]. Currently, with details from CT

images, the physician manually determines the angle and di-

rection to insert the tip of the needle toward the target position.

However, to guarantee the adequacy of the needle placement,

the physician often repositions the needle multiple times,

increasing the chance of complications (e.g., bleeding, tract

seeding) [6]. Moreover, in the current clinical practice, the 2D

slide based-view of CT image is often used to adjust the needle

placement, which requires high operator experience and might

be time-consuming. In addition, the intra-interventional CT

images are usually non-contrast enhanced and with fewer

slices to reduce the patient’s risk of renal impairment and

radiation exposure during the procedure, leading to low image

quality. Therefore, the physician needs numerous interactions

with the system to ensure an adequate position [6]. Addi-

tionally, several studies have proposed robotics for guiding

treatment in the intervention room, showing the potential of

needle segmentation in clinical practice [1], [7]. Thus, a 3D
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modeling of the needle could benefit both the physician and

a robotic approach during the puncture procedure, which may

improve procedural convenience and treatment accuracy by

providing the 3D information to visualize the position of the

needle.

The needle segmentation in the CT image during the RFA

procedure is the main challenge to perform the 3D needle

modeling. However, there are several challenges for computers

to segment the needle in CT images accurately (see Fig. 1):

(1) The needle in the CT image is usually displayed in a few

slices only with low resolution and low image quality due to

the purpose of reducing the radiation exposure to the patients;

(2) Metal artifacts caused by the needle potentially add noise

to the needle boundary, thus it is difficult to separate the needle

from the liver parenchyma; (3) The needle in CT images has

the same range of intensity values as other structures such

as bone or other metal equipment attached to the patient; (4)

The size and direction of the needle are different for each

patient, resulting in the various size of needle-VOI; (5) The

processing time is also an essential factor that helps minimize

the duration of treatment.

In this paper, we propose and assess a method for needle

segmentation in the CT image. Our approach is to utilize

two CNNs for localization and segmentation of the needle,

aiming for speed and accuracy. The 3D needle localization

problem can be solved by using 2D needle detection in three

orthogonal maximum intensity projections (MIPs) utilizing a

one-stage detector-YOLOv4 [8] to construct the needle-VOI.

A transfer learning-based CNN approach is applied to segment

the needle in the needle-VOI, in which the weight of the

segmentation network is transferred from the CNN introduced

by Mehrtash et al. (MehrtashNet) [7]. We also investigate the

optimal parameters for the proposed method to take advantage

of the localization and segmentation networks. The results

show that the proposed method achieved compatible accuracy

and significantly less processing time than other state-of-the-

art methods.

The remainder of this paper is organized as follows: We

review several related studies to our work in section III. The

details of the proposed method are described in section III.

Section IV covers the experiment and results of the study.

Finally, we discuss and conclude the findings of this study in

section V.

II. RELATED WORK

Many studies for needle segmentation and localization have

been published. Based on clinical application, the methods are

proposed for solving problems related to puncture, ablation,

biopsy, and brachytherapy and are also applied in different im-

age modalities, including ultrasound (US), magnetic resonance

imaging (MRI), and CT. These methods can be catagorized

into two groups: traditional image processing methods and

deep learning approaches.

A. Traditional image processing methods for needle segmen-
tation and detection

Hough transform and Radon transform are often applied

to detect linear objects, which are utilized in various needle

tracking studies. Qui et al. developed a method of needle

segmentation in 3D transrectal US, and this method improves

the implementation of the Hough transform to reduce needle

detection time [9]. Zheng et al. introduced a technique based

on an improved Hough transform to detect the ablation needle

and its tip in CT images [10]. Hatt et al. utilized the Radon

transform to extract the position and orientation of the needle

in the 2D beam-steered US [11]. Studies mentioned above

deal with straight needles. Meanwhile, the needle can be

curved when performing the RFA procedure due to the flexible

needles and movement of the patient’s organ [12].
The projection-based approach is often chosen for esti-

mating the needle position and orientation. Alpers et al.
introduced an image processing pipeline for needle position

and orientation reconstruction in the CT image during the RFA

procedure [6]. Their method is a combination of projection-

based and morphological approaches to reduce the computa-

tional time. However, this method uses the projection-based

approach to provide 2D information for the physician so that

it can be error-prone due to the lack of 3D information.

Aboofazeli et al. presented a method based on the projection

and Hough transform to address curved needle detection in

3D US images [12]. This method applied Hough transform to

detect the needle, which is unsuitable when other structures

have a shape that looks like needle the in the image [6].

B. Deep learning approach for needle segmentation and de-
tection

In recent years, deep neural networks have been applied to

solve many tasks in medical image analysis and yielded much

more competitive results than traditional methods [7]. Deep

learning techniques also have been investigated to support

the physician in the interventional room, showing potential

to apply in clinical practice. Arif et al. (2019) utilized a

CNN based on V-net to segment the needle in 3D US images

[13]. Zhang et al. (2020) presented a deep learning model, a

variant of the U-Net architecture, to segment the needle in 3D

transrectal US images [14].
Although the mentioned deep learning-based methods have

shown their efficiency in needle segmentation, these meth-

ods fed all image information into a CNN model, which

might result in segment needle-like structure (e.g., radiopaque

grid, metal wire. . . ) and lead to increase computational cost.

Mehrtash et al. (2018) introduced an automatic method for

segmenting the needle in MRI images, supporting guidance

prostate biopsy [7]. This method segments the prostate in MRI

images by a 2D CNN to construct the VOI. Subsequently, the

VOI of the prostate is fed into a 3D CNN to segment the nee-

dle. However, adding an additional segmentation framework

to construct the VOI may increase the processing time. It was

reported by Tian et al. that the segmentation of the prostate

in 3D MRI requires about 4 seconds [15].
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Fig. 1. Examples of intra-interventional CT images that contain the needle (in the green rectangles). Some challenges for needle segmentation (blue arrow)
include A-radiopaque grid, B-needle artifact, and C-surgical clips.

III. METHOD

In this section, we will describe our proposed method

that combines two CNNs for localization and segmentation

tasks. Fig. 2 illustrates the proposed method’s pipeline, which

contains four steps. Step 1: Generate three orthogonal MIPs

and detect the needle in these MIPs. Step 2: Generate the 3D

bounding box by adding an expanded border to guarantee to

cover all the needle area. Step 3: Generate the needle-VOI and

separate it into multiple patches without overlapping. Step 4:

Feed the patches into the segmentation network and perform

world coordinate mapping of the prediction to get the final

needle segmentation.

Coronal MIPAxial MIPSagittal MIP

Needle detection in orthogonal MIPs 

Patch-based segmentation

1 2

3

4

Needle localization Needle segmentation

Fig. 2. The diagram of the proposed method for localizing and segmenting
the needle in the CT image.

A. Needle localization

Performing the needle segmentation inside the needle-VOI

may eliminate the irrelevant structures and objects in the

CT image. The needle-VOI extraction is a 3D localization

task. We transfer the 3D localization problem to 2D needle

detection to reduce computational complexity. When perform-

ing CT imaging during the intervention, the needle strongly

attenuates the photon beam and causes beam hardening,

resulting in an area around the needle in the CT images with

often streaks of high and low intensity values. [16]. MIP,

a rendering technique that is widely used in medical image

analysis, selects the highest intensity along the direction of the

projection to create a 2D image. Therefore, MIP is suitable

for highlighting the needle in contrast to soft tissue, helping

to detect the needle accurately. The MIP of a CT image (ΔV )

along the z-axis direction is obtained as follows:

MIP
(
ΔV t(x, y)

)
= max

z
ΔV t(x, y, z). (1)

We use YOLOv4 to detect the needle in the orthogonal

MIPs since the YOLO-based approach is often applied in

studies for object detection in medical image analysis, which

requires a tight processing time [17]. A YOLO-based detector

is a one-stage detector introduced for real-time object de-

tection [8]. YOLOv4 has an optimized data processing and

network architecture, balancing accuracy and processing time.

The CT image is projected along three directions (z-axis

(axial), y-axis (sagittal), and x-axis (coronal)) to create three

2D orthogonal MIPs. The approximate needle tip position

could be extracted from these orthogonal MIPs. Similar to

the needle tip, we can determine the approximate starting

position of the needle. From two approximated positions, we

can generate the needle-VOI. Because the needle localization

tasks may have some errors in extracting the volume covering

the needle area, we will add an expanded border to the needle

volume to obtain the final needle-VOI. The expanded border

value is determined in Section IV.

B. Needle segmentation

Transfer learning is sometimes applied in medical image

analysis fields due to the lack of clinical data [18]. The

main idea of transfer learning is its ability to use previously

trained knowledge (features, weights) for a new model for

solving a similar problem. This approach may shorten the

training process and improve the model’s performance for

the new task. Besides, transfer learning requires less training

data, thus addressing the lack of data problem. In this study,

we reuse the model for needle segmentation provided by

Mehrtash et al. (MehrtashNet). MehrtashNet is inspired by

the U-Net model, which consists of 14 convolution layers and

three skip-connections. Because this architecture is designed

with the input size of (188x188x46) and the prediction out-

put size of (100x100x18), we use a patch-based strategy to

segment the needle to overcome the various needle shapes

while still taking advantage of the MehrtashNet architecture

and transfer learning process by retraining the trained model

from needle segmentation model for MRI image [19]. After
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appyling MehrtashNet to determine the needle segmentation,

we keep the largest connected component to get the final

needle segmentation.

0% Overlap 50% Overlap 90% Overlap

Fig. 3. Example of patch separation with null, medium, and high extent of
overlap. The green rectangle represents the needle-VOI, the red and orange
areas corresponding to the first and the following patches.

One issue that needs to be mentioned in the patch-based

segmentation strategy is the extent of overlap [19]. Fig. 3

shows the patch separation with three extents of overlap,

indicating that with the large extent value, there is more

sample provided for the model to segment, resulting in more

information and increasing the processing time. The optimal

extent of overlap will be determined via the experiment in

Section IV.

IV. EXPERIMENT AND EVALUATION

A. Data and annotations

The data used in this study was reused from our previous

work [20], consisting of 111 intra-interventional CT images

obtained from 24 patients that underwent RFA with CT image

guidance. The images were anonymized before being used

in this study. The CT images were obtained from Siemens

CT scanners with a low-dose protocol, the in-plane resolution

ranges from 0.51 to 0.92 mm, and the slice thickness ranges

from 0.4 mm to 5 mm, with the number of slices from 14

to 501. The CT images were acquired at 80-120 kVP, with

CTDIvol 2-10 mGy. The needle annotation is labeled by a

technician using the region growing algorithm and manually

edited the mislabeled, which is referred as the ground truth.

The needle segmentation ground truth is then verified by an

expert.

TABLE I
NUMBER OF CT IMAGE DATA FOR TRAINING/VALIDATION AND TESTING

set
Training/validation Testing
#Images #Slices #Images #Slices

size 88 5606 23 1272

The dataset was randomly splitted by 80% for train-

ing/validation of the proposed framework and by 20% for

testing the performance of the proposed method. The char-

acteristics of the splitted datasets are summarized in Table I.

B. Implementation Detail

This study was conducted on a workstation with Ubuntu

20.04 operating system with an Intel i9 10900K processor,

10 cores, and 20 threads with a clock rate of 3.7 – 5.3 GHz,

64GB RAM, and an RTX 3090 24GB VRAM GPU. Deep

learning models are run with the CUDA 11.2 library. The

object detector, YOLOv4, was implemented in the Darknet

framework [8], based on the open-source code of the author’s

Github repository. MehrtashNet is implemented in the Keras

(version 2.8.0) with Tensorflow (version 2.8.0) backend. The

proposed method is written in Python version 3.8.

We trained YOLOv4 using the fine-tuning technique, and

the pre-trained model was trained on the MS COCO dataset.

The training data consists of 264 orthogonal MIPs. In the

preprocessing step, the orthogonal MIPs intensity is clipped

to the range 400 to 3072, then scaled to the range of 0 to 255.

Data augmentation techniques include random rotation (0, 90,

180 and 270 degree), changing the contrast (in a range of 1.0

to 1.5), and adding Gaussian noise (with sigma value of 0.1).

We trained the YOLOv4 model with 100 epochs, using an

image size of 512x512, and batch size of 8 images, with a

learning rate, momentum, and decay set of 1×10−3, 0.9, and

5× 10−5, respectively. The training loss function consists of

three parts: Class loss, Box loss, and Object loss. To evaluate

the performance of the localization task, we used two metrics,

3D IoU and wall distance (WD) [17].

To train MehrtashNet, we used the trained model for the

needle segmentation task in MRI images [7]. Since the input

size is 188x188x46 and the output is 100x100x18, we split

patches in size of 100x100x18 in the needle-VOI area. To

match MehrtashNet input size, we used zero padding to

convert the input to 188x188x46 in size. In addition, we used

Dice loss with SGD algorithm and Adam optimization as

suggested in the original paper. The training parameters are

reused from the original paper.

For performance comparison with the proposed method, we

implemented the nn-Unet framework based on the open-source

code from the author’s Github repository [21]. The advantage

of nn-Unet is that it can automatically self-configure based

on the input dataset, which enables nn-Unet to achieve high

rankings in various medical imaging competitions. We trained

nn-Unet with the same training/validation set as the proposed

method.

C. Evaluation metrics

Two standard metrics used to evaluate the accuracy of the

segmentation task, the Dice score (DSC) and the Hausdorff

distance (HD), are used in this study. The DSC is calculated

as follows:

DSC =
2|X ∩ Y |
|X|+ |Y | , (2)

where X and Y is the predicted segmentation and ground truth

segmentation. The HD can be defined as follows:

HD(X,Y ) = max

{
max
x∈X

min
y∈Y

d(x, y),max
y∈Y

min
x∈X

d(x, y)
}
,

(3)

where d(x, y) is Euclidean distance between two points x and

y.
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In clinical practice, the needle shaft and tip positions are

two major factors in measuring the method’s performance.

Based on the study of Zhang et al. [14], the needle shaft error

(Eshaft) and needle tip error (Etip) are used. We calculate

the Eshaft as follows:

Eshaft =
1

N

N∑
i=1

d (CXi,CY i) , (4)

where N is the number slice that contains the needle in an

image, CXi and CY i are the predicted and ground truth

position of the center of mass of the needle for the ith slice.

The Etip is defined as:

Etip =
1

M

M∑
i=1

d (TXi,TY i) , (5)

where M is the number of needles in an image, TXi and

TY i are the tip position of predicted and ground truth in the

ith needle.

D. Evaluation of needle localization accuracy and determine
expanded border value

We evaluated the accuracy of localizing the needle in the

CT image. The YOLOv4 successfully detected the needle on

orthogonal MIPs in 22 out of 23 CT images of the test set. The

localization algorithm achieved a mean 3D IoU score of 77%

and the WD of 3.6 mm. Moreover, the algorithm estimated the

3D bounding box in 0.04 seconds on average. The algorithm

defines the 3D bounding box with the largest missing range of

needle area as 8.2 mm, and the largest excess range of needle

area as 31.2 mm. Therefore, we chose the expanded border

value of 10 mm to guarantee the needle inside the needle-VOI.

Sagittal MIP Coronal MIP Axial MIP

A B C

Fig. 4. A failure localization case in which the object detector results in the
prediction with a lower confidence score where the radiopaque grid projection
is overlapped the needle projection. The red bounding box represents a
confidence score lower than 10%.

Fig. 4 shows the results of a case when the YOLOv4 detects

the needle with low confidence, resulting in a failure in needle-

VOI estimation. In this case, a technician manually draws the

bounding box in the orthogonal MIPs to create the needle-VOI

for further evaluation.

E. Needle segmentation

1) Define the optimal extent of overlap value: To determine

the optimal extent of overlap value, we use the needle 3D

bounding box of ground truth to create the needle-VOI. As

suggested by the study by Bernal et al. [19], we separate the

patches in the needle-VOI area with null, medium, and high

extent of overlap (see Fig. 3). Then, we fed the patches into

the proposed needle segmentation flow to obtain the needle

segmentation.

TABLE II
COMPARISONS OF THE AVERAGES OF THE ACCURACY AND PROCESSING

TIME (PT) WHEN VARYING THE EXTENT OF OVERLAP VALUE WITH NULL,
MEDIUM, AND HIGH VALUES.

Metrics DSC HD Eshaft(mm) Etip(mm) PT (s)
null 0.89 2.8 0.39 0.78 1.8
medium 0.89 2.8 0.39 0.8 3.2
high 0.88 3.7 0.4 0.75 83

Table II displays accuracy and processing time when vary-

ing the extent of overlap value. Using Student’s t-Test, we

found no significant difference between the accuracies of

the extent of overlap values (p-value>0.1). Meanwhile, the

lowest average processing time reached 1.8 seconds at the null

extent of overlap value. Therefore, we chose the null extent

of overlap value for the following evaluation step.

2) Evaluation of needle segmentation accuracy: We com-

pare the accuracy and processing time of the proposed method

with state-of-the-art methods. The proposed method used

the expanded border value of 10 mm and the null extent

of overlap value to segment the needle in the CT images.

MehrtashNet uses all image information and performs patch-

based segmentation with the null extent value. Fig. 5 shows

that using all image information leads to unwanted segment

regions. We manually select the connected component of the

nn-UNet and MehrtashNet needle regions to compare with

the proposed method. Table III indicated that the proposed

method achieved comparable accuracy, while the processing

time is significantly lower than state-of-the-art methods.

TABLE III
COMPARISONS OF THE MEDIANS OF ACCURACY AND PROCESSING TIME

(PT) OF THE STATE-OF-THE-ART NEEDLE SEGMENTATION METHODS ON

CT IMAGES.

Metrics DSC HD
Eshaft

(mm)
Etip

(mm)
PT (s)

Proposed method 0.89 3.3 0.43 0.9 2.6
MehrtashNet + CC* 0.87 5.5 0.61 3.1 33
nn-Unet + CC* 0.89 1.9 0.56 0.5 28

* manually select the connected component (CC) to get final
needle segmentation.

V. DISCUSSIONS AND CONCLUSIONS

The performance of the needle localization task is presented

in sections IV-D. The proposed method achieved 77% of

3D IoU and 3.6 mm of WD. YOLOv4 is a convolutional

neural network that is data-driven; thus, performance could

be improved when there is a larger amount of data in the

training process. However, collecting large amounts of data

is a challenge. Therefore, how to improve the performance

of the localization task with limiting data will be a topic of

future research.
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3D rendering Ground truth Proposed nnUNet MehrtashNet 

Fig. 5. Examples of needle segmentation in the testing set (first row: two-needle; middle row: needle and radiopaque grid; last row: curved needle). The
first column is the 3D rendering of the CT image, and the following column is the ground truth of needle segmentation and predicted segmentation from the
methods in this study.

Table II shows that when performing the needle segmen-

tation in an accurate needle-ROI (i.e., ground truth), the

performance of the proposed method is improved. First, the

smaller needle-VOI reduces the processing time (1.8 seconds).

Compared to the results from Table III, the proposed method

with adding the expanded border value and the error of

localization task, leading to larger needle-VOI, has increased

processing time (2.6 seconds). It can be seen that the patched-

based segmentation strategy is affected by the needle-VOI.

The accuracy is decreased when a larger needle-VOI is per-

formed.

Table III shows that the proposed method requires signifi-

cantly less processing time than the state-of-the-art methods.

These results indicate that performing segmentation in the

needle-VOI reduces the processing time compared to using

the whole image. In addition, Fig. 5 shows that irrelevant

structures are eliminated using the proposed method.

In clinical practice, if the needle tip position and the target

position is larger than 5 mm apart, the physician or robot

needs to reposition the needle to get an adequate position

[1]. The needle tip error of the proposed method archived

a mean accuracy of 0.9 mm, and thus it is acceptable in term

of accuracy.

This study still has some limitations. First, we did not

improve needle detection in orthogonal projections and used

an expanded border value to guarantee the needle into needle-

VOI. The expanded border value may depend on the detector’s

performance and the dataset’s quality. Secondly, if the needle

is placed in-plane when generating the projections, the needle

information is small, and it lacks of information to determine

the needle-VOI area accurately. In a further study, this problem

should be investigated more thoroughly.

In conclusion, this study has proposed a method for needle

localization and segmentation in CT images to improve needle

visualization in the RFA intervention procedure. We evaluated

the performance of the needle localization task, which is the

main contribution to the proposed method’s advantages in re-

ducing the processing time and eliminating unwanted regions

segmentation. The results showed that the proposed method

achieved comparable accuracy while having a significantly

less processing time than the state-of-the-art methods. The

results of this study show the potential to apply in clinical

practice.
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