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Abstract—Acoustic scene classification (ASC) and sound event
detection (SED) are fundamental tasks in environmental sound
analysis, and many methods based on deep learning have been
proposed. Considering that information on acoustic scenes and
sound events helps SED and ASC mutually, some researchers
have proposed a joint analysis of acoustic scenes and sound events
by multitask learning (MTL). However, conventional works have
not investigated in detail how acoustic scenes and sound events
mutually benefit SED and ASC. We, therefore, investigate the
impact of information on acoustic scenes and sound events on
the performance of SED and ASC by using domain adversarial
training based on a gradient reversal layer (GRL) or model
training with fake labels. Experimental results obtained using
the TUT Acoustic Scenes 2016/2017 and TUT Sound Events
2016/2017 show that pieces of information on acoustic scenes
and sound events are effectively used to detect sound events and
classify acoustic scenes, respectively. Moreover, upon comparing
GRL- and fake-label-based methods with single-task-based ASC
and SED methods, single-task-based methods are found to achieve
better performance. This result implies that even when using
single-task-based ASC and SED methods, information on acoustic
scenes may be implicitly utilized for SED and vice versa.

I. INTRODUCTION

Environmental sound analysis [1], [2] is the analysis of
audio recordings that are not limited to voice or music and
has various real-world applications such as machine condi-
tion monitoring, automatic surveillance, media tagging, and
biomonitoring systems [3], [4], [5], [6]. In environmental
sound analysis, acoustic scene classification (ASC) and sound
event detection (SED) are the fundamental research topics.
In ASC, an acoustic scene label is estimated from a sound
recording where the acoustic scene is defined as the place or
situation in which the audio is recorded, such as home, train,
or meeting. In SED, sound event labels and their timestamps
in the sound recording are predicted, where a sound event is
defined as a sound class, such as bird singing, cutlery, or car
horn.

Recently, many systems for environmental sound analysis
have been implemented using neural networks. For example,
Valenti et al. [7], Liping et al. [8], Tanabe et al. [9], and
Raveh and Amar [10] introduced ASC methods based on the
convolutional neural network (CNN), Xception, VGG, and
ResNet, respectively. Çakır et al. introduced the convolutional
recurrent neural network (CRNN), which can capture temporal

and spectral information of sound events [11], for the SED
task. Kong et al. [12] and Miyazaki et al. [13] proposed
SED methods using a Transformer and Conformer encoder,
respectively.

The conventional methods for environmental sound anal-
ysis address scene classification and event detection tasks
separately. However, acoustic scenes and sound events are
closely related; for example, in the acoustic scene office, the
sound events keyboard typing and mouse clicking tend to
occur, whereas the sound events cutlery and car horn occur
infrequently, as shown in Fig. 1. Thus, the information on the
sound events keyboard typing and mouse clicking will help in
estimating the acoustic scene office and vice versa. Considering
the relationship between acoustic scenes and sound events,
Mesaros et al. [14] and Heittola et al. [15] proposed SED meth-
ods utilizing information on acoustic scenes. Imoto and co-
workers proposed ASC methods based on Bayesian generative
models, in which information on sound events is considered
[16], [17]. Bear et al. [18], Tonami et al. [19], and Jung et al.
[20] presented methods of jointly analyzing acoustic scenes
and sound events based on the multitask learning (MTL)
of ASC and SED. These works have revealed that utilizing
the relationship between acoustic scenes and sound events
improves the performance of each downstream task. However,
conventional studies have not fully clarified how acoustic
scenes and sound events mutually benefit event detection and
scene classification tasks. In this work, we thus investigate the
impact of information on acoustic scenes and sound events on
the performance of SED and ASC by using domain adversarial
training with a gradient reversal layer (GRL) [21] or model
training with fake labels.

The remainder of this paper is structured as follows. In
section 2, we overview the conventional scene classification
and event detection methods based on single and multitask
learning. Section 3 introduces the model training based on
GRL and fake labels. In section 4, we discuss in detail
how information on acoustic scenes and events affects the
performance of ASC and SED, referring to the results of
evaluation experiments. We conclude this paper in section 5.
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Fig. 1: Frequency of sound event instances for each acoustic scene in dataset used for evaluation experiments

II. CONVENTIONAL METHODS

A. Conventional Scene Classification and Event Detection
Methods

In this section, we overview the conventional works of ASC
and SED. Recently, many neural-network-based approaches
such as CNN [7], [22], CRNN [11], and Transformer en-
coder [12] have been proposed. These methods use the time–
frequency representation of the acoustic signal X ∈ RD×T ,
such as the log mel-band spectrogram, as the acoustic feature,
where D and T indicate the numbers of frequency bins and
time frames, respectively. This acoustic feature is then fed to
the ASC or SED network.

The model parameters of ASC are trained using the network
output yn and the cross-entropy (CE) loss function Lscene,

Lscene = −
N∑

n=1

{
sn log(yn)

}
, (1)

where N and sn are the number of acoustic scene classes and
the target scene label, respectively.

The model parameters of SED are trained using the network
output yt,m and the following binary cross-entropy (BCE) loss
function Levent,

Levent = −
T∑

t=1

{
zt log(yt)+(1−zt) log(1−yt)

}

= −
T,M∑
t,m=1

{
zt,m log(yt,m)+(1−zt,m) log(1−yt,m)

}
,

(2)
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Fig. 2: Network structure of MTL-based joint analysis of ASC
and SED [19]

where T , M , and zt,m indicate the number of time frames,
the number of sound event classes, and the target event label,
respectively.
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B. Joint Analysis of Acoustic Scenes and Sound Events Based
on Multitask Learning

Most conventional works address ASC and SED separately;
however, many acoustic scenes and sound events are related
mutually. Considering that knowledge of acoustic scenes and
sound events can mutually aid in their estimation, the joint
analysis of acoustic scenes and sound events based on multi-
task learning has been proposed [18], [19], [23].

The network structure of MTL for the joint analysis of
acoustic scenes and sound events is shown in Fig. 2. The
MTL network consists of shared, scene-specific, and event-
specific layers. The shared layers have convolution layers for
extracting the embedded acoustic features and are expected to
extract the information common to acoustic scenes and sound
events. The scene- and event-specific layers include the CNN
and recurrent neural network (RNN) layers, which are used
for the downstream tasks of ASC and SED.

To train the MTL model of ASC and SED, the following
loss function L is applied:

L = αLscene + βLevent, (3)

where α and β are the constant weighting factors of ASC and
SED losses, respectively. In this work, β = 1.0 can be set
without loss of generality.

III. METHODOLOGY

Some conventional studies on jointly analyzing acoustic
scenes and sound events revealed that pieces of information
on acoustic scenes and sound events improve the performance
of SED and ASC, respectively [19]. However, how acoustic
scenes and sound events benefit SED and ASC tasks mutually
has not been fully investigated in conventional studies. To
evaluate how information on acoustic scenes and sound events
benefits the performance of ASC and SED, we apply the
domain adversarial training based on GLR and fake labels of
acoustic scenes and sound events, which enables the training of
the model without intentionally using information on acoustic
scenes and sound events.

A. MTL Based on Domain Adversarial Training

We first apply the domain adversarial training based on GLR
[21] to the MTL of ASC and SED. The GRL acts as an identity
transformation of the input during the forward propagation, but
changes the sign of input, i.e., it multiplies by -1 during the
backpropagation as follows.

Forward: G(x) = x (4)

Backward:
dG

dx
= −λI (5)

Here x, λ, and I are the input of the GRL, the weighting
factor, and the identity matrix, respectively. By adding the
GRL to a network, the model parameters in layers prior to

the GRL are trained as increasing the prediction error. Thus,
the GRL enables the training of models that do not depend
on the downstream task with this layer. In the experiments
conducted in this work, we added the GRL to either position
shown by the red arrows (S1, S2, E1, and E2) in Fig. 2 and
evaluated the performance of ASC and SED.

B. MTL Based on Fake Label

We also evaluate the performance of ASC and SED using
the MTL model trained with fake labels. In this work, we
created fake scene and event labels as follows.

Fake scene label: ŝ = shuffle(s) (6)

Fake event label: ẑt = shuffle(zt) (7)

Here, shuffle, s, and zt indicate the random reordering opera-
tion of vector elements, the target scene label vector, and the
target event label vector in time frame t, respectively. In the
experiment, we replaced either the acoustic scene or sound
event labels with the fake labels. As with the GRL, the model
training with fake labels allows us to investigate how acoustic
scenes and sound events affect ASC and SED.

IV. EVALUATION EXPERIMENTS

A. Experimental Conditions

We conducted evaluation experiments to investigate how the
information on acoustic scenes and sound events can benefit
ASC and SED tasks. In the evaluation experiments, we used
a dataset composed of parts of the TUT Acoustic Scenes
2016/2017 and TUT Sound Events 2016/2017 [24], [25]. From
these four datasets, we selected sound clips of four acoustic
scenes, city center, home, office, and residential area, which
include 25 sound event classes. The data comprises a total of
266 min of sounds (192 min for the development set and 74
min for the evaluation set). The details of the dataset used for
the evaluation experiments are found in [26].

As an acoustic feature, we extracted the 64-dimensional log
mel-band energy, which was calculated with a 40 ms frame
length and a 20 ms hop size. We used the same MTL network
structure as that of the conventional method [19], as shown in
Table I, where BiGRU and FC layers indicate the bidirectional
gated recurrent unit and fully connected layers, respectively.
For each method, we conducted the evaluation experiments 10
times with random initial values of model parameters. Other
experimental conditions are listed in Table II.

B. Experimental Results

1) Overall Performance of ASC and SED: Table III shows
the overall performance of ASC and SED. CNN (ASC) and
CNN-BiGRU (SED) are the single task networks for ASC and
SED; they have the same network structures as the shared +
scene layers and shared + event layers in Table I, respectively.
GRL (S1) indicates the MTL-based method with GRL in S1
of Fig. 2. In this experiment, we evaluated the SED system
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TABLE I: Details of structure of MTL network of ASC and
SED

Shared layers
Log-mel energy

500 frames × 64 mel bin
3×3 kernel size / 128 ch.
Batch norm., Leaky ReLU

1×8 Max pooling 3×3 kernel size / 128 ch.
Batch norm., Leaky ReLU

1×2 Max pooling

 × 2

Scene layers Event layers
3×3 kernel size / 256 ch.
Batch norm., Leaky ReLU BiGRU w/ 32 units

25×1 Max pooling
3×3 kernel size / 256 ch.
Batch norm., Leaky ReLU FC w/ 32 units, Leaky ReLU

Global max pooling
FC w/ 32 units, Leaky ReLU FC w/ 25 units, Sigmoid

FC w/ 4 units, Softmax

TABLE II: Experimental conditions
Acoustic feature Log-mel energy (64 dim.)
Frame length / shift 40 ms / 20 ms
Length of sound clip 10 s
Optimizer RAdam [27]
α, β 0.0001, 1.0
λ 1.0

with the frame-based metric because the SED system outputs
the frame-wise predictions, and we can understand the basic
trends of the system output with this metric.

The results show that when we apply the GRLs in the
scene and event layers or train models with fake labels,
the performance of ASC and SED tends to decrease. These
results indicate that pieces of information on acoustic scenes
and sound events are effectively used to detect sound events
and classify acoustic scenes, respectively. A comparison of
GRL- and fake-label-based methods with single-task-based
ASC and SED methods reveals that single-task-based methods
achieve better performance. This result implies that even when
using single-task-based ASC and SED methods, information
on acoustic scenes may be implicitly utilized for SED and vice
versa.

2) Details of Performance of SED and ASC: To investigate
the event detection performance in detail, we show the Fscores
for selected sound events in Table IV. Note that a similar
trend is observed for sound events not shown in Table IV.
This result shows that the Fscores decrease when we train
the models with GRL (S1), GRL (S2), and fake scene labels.
This result also supports that information on acoustic scenes
is effectively used to detect sound events. Moreover, the
experimental result shows that CNN-BiGRU, which is the
single-task-based method, outperforms GRL (S1), GRL (S2),
and fake scene labels. Thus, when detecting most sound events
using the single-task-based method, information on acoustic

TABLE III: Overall performance of ASC and SED
Scene Event

Method Micro- Macro- Micro- Macro-
Fscore Fscore Fscore Fscore

CNN (ASC) 85.00% 84.29% - -
CNN-BiGRU (SED) - - 42.54% 11.09%
Conventional MTL 88.57% 88.85% 44.63% 11.57%
GRL (S1) 77.89% 76.14% 40.08% 9.64%
GRL (S2) 33.34% 22.03% 39.59% 9.92%
Fake scene labels 24.45% 11.55% 41.57% 10.43%
GRL (E1) 60.90% 56.30% 13.07% 1.12%
GRL (E2) 75.23% 73.99% 0.02% 0.02%
Fake event labels 84.22% 84.09% 0.00% 0.00%

TABLE IV: Average Fscores for selected sound events
bird keyboard largeMethod singing car dishes typing vehicle

CNN-BiGRU (SED) 46.36% 44.53% 0.17% 4.34% 12.27%
Conv. MTL 46.29% 45.51% 0.25% 5.08% 12.29%
GRL (S1) 40.96% 43.46% 0.00% 0.56% 9.28%
GRL (S2) 37.62% 40.12% 0.01% 1.21% 10.54%
Fake scene label 28.93% 39.96% 0.06% 1.63% 12.05%
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Fig. 3: Confusion matrix for each method in terms of recall
(%)

scenes may also benefit SED implicitly.
The detailed classification results of acoustic scenes are

shown in Fig. 3. Compared with CNN (ASC), the MTL of ASC
and SED has fewer misclassifications of office. Moreover, the
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MTL of ASC and SED still confuses city center and residential
area. This is because in city center and residential area,
similar sound events tend to occur, as shown in Fig. 1; thus,
providing information on sound events yields fewer benefits in
distinguishing between these acoustic scenes. The comparison
of CNN (ASC) and GRL (E2) also shows that information on
annotated sound events is used in the single-task-based ASC
method implicitly. On the other hand, the impact of unlabeled
sound events, such as background noise, on ASC must be
further investigated in future work.

V. CONCLUSIONS

In this study, we investigated how information on acoustic
scenes and sound events benefits SED and ASC in detail. To
evaluate this, we applied domain adversarial training based
on GRL and fake labels of acoustic scenes and sound events.
The evaluation experiments conducted using parts of the TUT
Acoustic Scenes 2016/2017 and TUT Sound Events 2016/2017
datasets indicated that pieces of information on acoustic scenes
and sound events were effectively utilized for SED and ASC,
respectively. Moreover, by comparing GRL- and fake-label-
based methods with single-task-based methods, we found that
single-task-based methods achieve better performance. This
implies that even when using single-task-based ASC and SED
methods, information on acoustic scenes may be implicitly
utilized for SED and vice versa.
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