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Abstract—In this study, we propose a method for estimating a
sparse spectrum of sound using multiple sound-to-light conversion
devices called Blinkies. A Blinky is a compact device that converts
sound information into the light with a programmable operation.
By distributing multiple Blinkies and monitoring them with a
video camera, we can obtain acoustic information from a wider
area without wired or wireless communication. However, due to
the limited frame rate of the video camera, the bandwidth of
the observed video signals is significantly narrower than that
of the original sound. To restore the spectrum of an original
sound signal, we design the entire signal acquisition process
with multiple Blinkies and a video camera to be regarded as
compressed sensing. We show that a sparse sound spectrum can
be restored with the proposed method by numerical experiments.

I. INTRODUCTION

Sound is one of the most informative media in scene
analysis and recognition [1]–[3]. Acoustic scene analysis using
distributed microphones has been much studied in the literature
with a focus on spatial information as well as temporal infor-
mation of the sound [4]. For example, several competitions on
acoustic scene analysis, such as the DCASE challenge, have
been held in recent years, and various state-of-the-art methods
have been proposed and evaluated [5]–[7].

One difficulty in acoustic scene analysis based on distributed
microphones is communication and synchronization of the data
observed by the multiple microphones. A Blinky, a compact,
battery-powered sound-to-light conversion device proposed
by Sheibler and Ono [8], is a promising solution for such
problems. A Blinky is equipped with a microphone and a light
emitting diode (LED). An acoustic signal measured by the
microphone is converted to a light signal from the LED via a
programmable sound-to-light conversion process. By distribut-
ing multiple Blinkies over space and observing them with a
single video camera, it is easy to capture synchronized data
emitted from distributed Blinkies without wired or wireless
communication.

Various acoustic sensing frameworks using Blinkies have
been proposed, and their practical effectiveness has been
validated in numerical and real-world experiments [9]–[13]. In
most methods, the intensity of the light signal is determined
by the short-time power of the observed sound signal, which is
mainly because the frame rate of a video camera is generally

much lower than the sampling rate of a microphone (for
example, 30Hz against 16 kHz). Therefore, in contrast to
spatial information, temporal information of the target sound is
lost significantly in such an observation system. To improve the
accuracy and applicability of the system, further investigation
regarding the acquisition of temporal information has been
desired.

In this study, we propose a method for estimating the
sparse temporal spectrum of the target sound using distributed
Blinkies by designing their suitable sound-to-light conversion
processes, which is the first attempt in the literature. Spectra
of artificial sounds, such as alarm sounds of household appli-
ances, are expected to be sparse, and the proposed method can
be used to detect such artificial sounds, for example. In the
proposed framework, the Blinkies’ sound-to-light conversion
processes are designed so that the entire observation system
corresponds to the compressed sensing [14]–[16] from the
spectrum of the source signal to the observed light signal.
Finally, the spectrum of the source signal is estimated by
solving a sparse optimization problem. Here, we propose an
iterative algorithm based on the proximal gradient method [17],
which guarantees convergence to the global optimal solution.
Numerical experiments were conducted to evaluate the pro-
posed method, and their results indicated that the spectrum
of various types of source signals was estimated successfully
using the distributed Blinkies.

II. PROBLEM SETTING

Suppose multiple Blinkies are distributed in a certain envi-
ronment and observed by a video camera, as in Fig. 1, where
the Blinkies’ positions need not be given. When a sound is
generated from some sound source, each Blinky converts the
captured sound to a light signal via a programmable conversion
process. Here, the target sound is assumed to be sparse in the
frequency domain, which is satisfied well for various artificial
and natural sounds. Our objective is to estimate the normalized
amplitude spectrum of the target sound from the observed
video signal. The Blinkies are not synchronized or connected
with a network, but their light signals are regarded to be
synchronized since they are captured by a single video camera.
In addition, the video camera and Blinkies are assumed to
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be calibrated so that the output light signal of each Blinky
can be obtained directly from the video signal (see [11] for a
calibration method).

III. COMPRESSED SENSING WITH SOUND-TO-LIGHT
CONVERSION DEVICES

This section describes the observation model relating the
sound and light signals and the method for estimating the
original sound signal from the observed light signals.

A. Observation Model

Suppose an L-sample short-time source signal s ∈ RL is
observed by M Blinkies. Let sm ∈ RL be the observed sound
signal at the mth Blinky. The one-sided amplitude spectra of
s and sm obtained by the discrete Fourier transform (DFT)
are denoted by x ∈ RN and xm ∈ RN , respectively (N =
⌊L/2+1⌋). By assuming the reverberation and sound traveling
time are small enough, xm is given by

xm = amx, (1)

where am ≥ 0 is a coefficient representing the acoustic
attenuation determined by the distance between the source to
the mth Blinky.

Then, by defining hm(·) as the mth Blinky’s sound-to-light
conversion, the light signal ym captured by the video camera
is given by

ym = hm(xm) + nm, (2)

where nm denotes the observation noise. Here, we assume the
video camera is calibrated so that we can directly obtain the
output light signal xm.

B. Proposed Sound-to-Light Conversion in Blinky

We design the sound-to-light conversions in Blinkies so
that the whole observation system corresponds to that of
linear compressed sensing, whose reconstruction method is
well established. Here, we consider the compressed sensing
of the normalized amplitude spectra x′ ∈ RN defined as

x′ =
x

∥x∥2
, (3)

instead of x because the coefficient am is generally difficult
to obtain.

For this purpose, we design the sound-to-light conversion
function hm(·) as

hm(xm) = ψT
m

xm

∥xm∥2
(4)

with a certain weight vector ψm ∈ RN . Then, from (1), (2),
and (3), the output signal ym ∈ R is represented as

ym = ψT
mx′ + nm. (5)

Furthermore, by stacking (5) for m = 1, . . . ,M , we obtain

y = Ψx′ + n (6)

where y = [y1, . . . , yM ]T, Ψ = [ψ1, . . . ,ψM ]T, and n =
[n1, . . . , nM ]T.

C. Amplitude Spectrum Estimation

Our objective is to estimate the normalized amplitude spec-
trum x′ from the observed light signal y under the sparsity
assumption on x′. This problem can be formulated as

minimize
x′∈RN

1

2
∥y −Ψx′∥22 + λ∥x′∥1 s.t. x′ ≥ 0, (7)

where λ > 0 is a regularization parameter and the constraint
x′ ≥ 0 means each element of x′ is nonnegative. This is
a convex optimization problem and can be solved by the
proximal gradient method, which is derived as follows. First,
the optimization problem (7) can be rewritten as

minimize
x′∈RN

1

2
∥y −Ψx′∥22 + λ∥x′∥1 + Γ(x′), (8)

where

Γ(z) =

{
0 z ≥ 0

∞ otherwise
. (9)

Since the first term is differentiable and the sum of the second
and third terms is proximable, the update rule for the proximal
gradient method is given by

x′ ← Sγλ(x
′ − γΨT(Ψx′ − y)), (10)

where Sγλ(·) is the proximal operator of the sum of the second
and third terms of (8), which is given by the elementwise
operation of the scalar function Tγλ(·) defined as

Tγλ(z) =

{
z − γλ z ≥ γλ

0 z < γλ
. (11)

To guarantee convergence, the step size parameter γ has to be
set as

0 < γ <
2

λmax(ΨTΨ)
, (12)

where λmax(·) denotes the maximum eigenvalue of the ma-
trix. This algorithm can be interpreted as a slightly modified
form of the Iterative Shrinkage Soft-thresholding Algorithm
(ISTA) [17], whose modification is due to the nonnegative
constraint (9).

IV. EXPERIMENT

To verify the performance of the proposed framework in
estimating amplitude spectra, the accuracy was evaluated by
simulation experiments.

A. Ideal Condition

First, the ideal condition where the observed signals were
generated exactly in accordance with (5) was simulated. The
number of Blinkies was M = 30, and several source signals
with L = 512 (N = 257) samples whose sampling rate was
16 kHz were investigated. Each element of Ψ was determined
randomly to follow the Gaussian distribution with mean 0 and
variance 1. The noise nm is sampled independently for each
m from the Gaussian distribution with mean 0, where several
variances were investigated. The noise level for the observed
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Fig. 1. Proposed sensing framework.

signal was evaluated by the Input Signal-to-Noise Ratio (Input
SNR), defined as

Input SNR = 10 log10
∥y − n∥22
∥n∥22

. (13)

On the other hand, the estimation accuracy was evaluated by
the Output Signal-to-Noise-Ratio (Output SNR), defined as

Output SNR = 10 log10
∥x′∥22

∥x̂′ − x′∥22
, (14)

where x̂′ ∈ RN denotes the estimated value of x′. Here, x̂′ was
obtained using the algorithm given by (10) for 20000 iterations
with γ = 1

λmax(ΨTΨ)
.

Figure 2 shows the relationship between λ and the Output
SNR for several different Input SNRs. In this figure, a sin wave
whose frequency was 1 kHz was used as the source signal.
Each value in Fig. 2 is the average of the Output SNR for 50
trials with respect to the random weight matrix Ψ and noise
n. We can see that λ = 1 achieved high Output SNR for each
Input SNR. From this result, we fixed λ = 1 in the following
experiments.

Table I shows the average of Output SNR against the Input
SNR for seven different source signals. Each value in Table I
is the average of the Output SNR for 50 trials with respect to
the random weight matrix Ψ and noise n. Here, instrumental
sounds (monophonic sounds) from SMILE2004 [18] were used
as the source signals. We can see that the Output SNR was
improved significantly as the Input SNR increases to 20 dB,
but the improvement becomes smaller from 20 dB to 30 dB.

The ℓ1 norm for each instrumental sound was 4.2906 for
Violin, 5.0590 for Cello, 5.0974 for Flute, 3.4606 for Piccolo,
3.2908 for Oboe, 4.3401 for Horn, and 5.1886 for Trumpet.
The relationship between these ℓ1 norms and the Output SNRs
given in Table I indicates that the proposed method was
suitable for estimating a sound with a sparse spectrum.

For further investigation, the true and estimated amplitude
spectra for two different source signals at Input SNR = 20dB
were plotted in Figs. 3a and 3b. Also from these figures, we
can see that the spectrum of the Piccolo sound, which was
relatively sparse, was estimated more accurately than that of
the Trumpet sound.
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Fig. 2. Output SNR for each regularization parameter λ. The legend indicates
Input SNR.

TABLE I
OUTPUT SNR (dB) FOR EACH INSTRUMENTAL SOUND IN IDEAL

CONDITION

Input SNR 0 dB 10 dB 20 dB 30 dB
Violin 0.6445 5.1774 6.5376 6.7998
Cello -0.3978 4.1895 4.9960 5.0392
Flute -0.5325 3.7114 4.9322 5.0168

Piccolo 0.9665 7.4542 9.2871 9.7334
Oboe -0.3774 6.7760 9.8458 10.4685
Horn -0.4375 4.8808 6.7914 7.1207

Trumpet -1.1470 1.8885 2.7205 2.8437
Average -0.1768 4.8683 6.4444 6.7174

B. Simulated Room Environment

Next, similar evaluations were conducted in a simulated
room environment. In this experiment, the sound transfer from
the source to the Blinkies was simulated using Pyroomacous-
tics [19]. In this case, because of the time difference between
Blinkies and the room reverberation, the observed signal y
does not follow (5) exactly. A two-dimensional model with a
size of 5m×5m was simulated. The reflection coefficient and
the maximum number of reflections were determined so that
the reverberant time was RT60 = 300ms. A signal source was
located in the center of the room, and the M = 30 Blinkies
were located randomly as shown in Fig. 4. Other experimental
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(a) Piccolo (Output SNR = 10.0345 dB)
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Fig. 3. True and estimated spectra in ideal condition for Input SNR = 20dB.

conditions, such as Blinky’s sampling rates, were the same as
in an ideal condition.

Table II shows the Output SNR against the Input SNR for
seven different source signals. Each value in the Table II is
the average of the Output SNR for 50 trials with respect
to the random weight matrix Ψ and noise n. By comparing
Table I and Table II, we can see that the Output SNR generally
became lower in the presence of reverberation and time delay.
However, the proposed method achieved the Output SNR of
around 5 dB when the Input SNR was 20 dB or 30 dB even
under the influence of reverberation and time delay.

The true and estimated amplitude spectra for two different
source signals at Input SNR = 20dB were plotted in Figs. 5a
and 5b. Output SNR generally decreased in a simulated room
environment compared to the ideal conditions, but roughly
similar trends were observed between the different instruments.

Finally, a linear chirp signal whose frequency varied from
1Hz to 8 kHz over five seconds was estimated by using the
proposed method for each 512 sample without overlap. The
true and estimated spectrograms are shown in Fig. 6 and 7.
We can see the linear chirp in Fig. 6 and 7, which indicates
the proposed method was able to reconstruct major features of
the target spectrogram.
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Fig. 4. Blinky and source location in simulated room environment.

TABLE II
OUTPUT SNR (dB) FOR EACH INSTRUMENTAL SOUND IN SIMULATED

ROOM ENVIRONMENT

Input SNR 0 dB 10 dB 20 dB 30 dB
Violin 0.1344 4.9662 6.0851 6.0363
Cello -0.9870 3.4329 4.3210 4.4029
Flute -0.2573 3.6423 4.5894 4.7577

Piccolo 0.6508 6.4194 8.3880 8.5764
Oboe -0.9431 4.3936 5.7117 6.0426
Horn -0.6805 4.0543 5.6573 5.6959

Trumpet -1.0468 1.6835 2.5766 2.6313
Average -0.4471 4.0846 5.3327 5.4490

V. CONCLUSION

In this paper, we proposed a method for estimating the
sparse spectrogram of sound using multiple Blinkies. In the
proposed method, we designed the entire signal acquisition
process with the Blinkies to be regarded as compressed sens-
ing. Experimental results showed that the proposed method
was able to estimate major spectrum components in an ideal
condition and a simulated room environment. We will inves-
tigate the effect of the number and placement of Blinkies and
evaluate the performance of the proposed framework in a real-
world environment in future work.
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