
Proceedings of 2022 APSIPA Annual Summit and Conference 7-10 November 2022, Chiang Mai, Thailand

Music Similarity Calculation of Individual
Instrumental Sounds Using Metric Learning

Yuka Hashizume∗, Li Li† and Tomoki Toda‡
∗ Nagoya University, Nagoya, Japan

E-mail: hashizume.yuuka@g.sp.m.is.nagoya-u.ac.jp
† Nagoya University, Nagoya, Japan
E-mail: li.li@g.sp.m.is.nagoya-u.ac.jp
‡ Nagoya University, Nagoya, Japan
E-mail: tomoki@icts.nagoya-u.ac.jp

Abstract—The criteria for measuring music similarity are
important for developing a flexible music recommendation sys-
tem. Some data-driven methods have been proposed to calculate
music similarity from only music signals, such as metric learning
based on a triplet loss using tag information on each musical
piece. However, the resulting music similarity metric usually
captures the entire piece of music, i.e., the mixing of various
instrumental sounds sources, limiting the capability of the music
recommendation system, e.g., it is difficult to search for a
musical piece containing similar drum sounds. Towards the
development of a more flexible music recommendation system,
we propose a music similarity calculation method that focuses
on individual instrumental sound sources in a musical piece.
By fully exploiting the potential of data-driven methods for our
proposed method, we employ weakly supervised metric learning
to individual instrumental sound source signals without using
any tag information, where positive and negative samples in a
triplet loss are defined by whether or not they are from the same
musical piece. Furthermore, assuming that each instrumental
sound source is not always available in practice, we also investi-
gate the effects of using instrumental sound source separation to
obtain each source in the proposed method. Experimental results
have shown that (1) unique similarity metrics can be learned
for individual instrumental sound sources, (2) similarity metrics
learned using some instrumental sound sources are possible to
lead to more accurate results than that learned using the entire
musical piece, (3) the performance degraded when learning with
the separated instrumental sounds, and (4) similarity metrics
learned by the proposed method well produced results that
correspond to perception by human senses.

I. INTRODUCTION

The amount of music available on the Internet is enor-
mous and continues to grow. Under such circumstances, it
is impossible to listen to all the music in the world to find
users’ favorite music. Therefore, a music information retrieval
(MIR) technique, such as a music recommendation system, is
necessary to help users find their favorite music efficiently,
and the development of a suitable criterion for measuring
music similarity is essential.

One of the typical methods for calculating the similarity
between musical pieces is to utilize the user’s listening history
[1]. A collaborative filtering technique is one of the most
successful approaches. This method assumes that users who
have rated some items similarly or behaved in the same

way will also rate other items similarly. Therefore, scores
for unseen music can be predicted from the scores rated by
other users with similar behavior. However, one limitation is
that newly released music may be rarely recommended until a
certain amount of listening history has been recorded. Another
problem is that users rarely listen to music that is not well
known since popular music can generally get more ratings.

Different from the collaborative filtering, another main
branch of conventional methods is content-based approaches,
which recommend music on the basis of content similarity
instead of user’s behavior. The content-based similarity is
generally obtained by extracting feature representations from
music signals and calculating the similarity or distance be-
tween the representations. Before the advent of deep learn-
ing, low-level features such as chord progression or tempo
and high-level features such as manually designed acoustic
features were used as the feature representations [2]. The
similarity between them is then measured by using a distance
criterion, such as cosine distance and Euclidean distance.
Content-based methods avoid the problem associated with
collaborative filtering since they do not require human ratings.
However, their performance depends on handcrafted features
and the selected distance criterion, which do not always work
well owing to the lack of generalization capability.

With the advent of deep learning, data-driven feature ex-
traction has shown to be effective in improving the per-
formance of MIR systems [3], [4]. For example, [4], [5]
have proposed to extract the feature representations from
the middle layer of a genre classifier. Some methods have
been proposed to learn the feature representations by metric
learning using tag information such as tags given by humans
[6], artist tags [7], genre tags [8], and tags using zero-shot
learning [9]. These conventional methods measure the music
similarity by taking the entire musical piece, i.e., the mixing
of various instrumental sound, into consideration. However,
since the perspective of a musical piece the users want to
listen to varies from user to user, measuring a musical piece
only from a single perspective is insufficient. To achieve more
flexible MIR systems, calculating music similarities using
more varieties of feature representations of musical pieces
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is necessary.
In this paper, to achieve more flexible calculation of music

similarity, we propose a music similarity calculation method
that focuses on individual instrumental sound sources in a
musical piece. By fully exploiting the potential of data-driven
feature extraction techniques for our proposed method we
extract the feature representations by using weakly supervised
metric learning with track information instead of using any
tag information. In the proposed method, the similarity is
calculated using each instrumental sound source instead of the
entire musical piece. Furthermore, assuming that individual
instrumental sources are difficult to obtain in practice, we
apply instrumental source separation to obtain each source
from the original mixed musical piece and evaluate the
proposed method with separated signals. By conducting the
objective and subjective experiments, we mainly investigate
the following three questions: (1) whether unique and useful
similarity metrics can be learned for different instruments, (2)
whether separated instrumental source signals can be used
for similarity calculation in the proposed method, and (3)
whether the learned similarity metrics can produce results that
correspond to the perception of human senses.

II. RELATED RESEARCH

A. Feature extraction for computing similarity between mu-
sical pieces

Li et al. [11] proposed a method of extracting the feature
representations using a convolutional neural network (CNN),
which took mel frequency cepstral coefficients (MFCCs) as a
network input and output the predicted genre. Latent features
used as an input of the last layer were extracted as the feature
representations from MFCCs. Recently, there has been an
increasing number of studies using mel-spectrograms as the
input instead of MFCCs. For example, Fathollahi and Razzazi
[5] split a musical piece into three-second segments and
converted each of them into a corresponding mel-spectrogram,
which was then used as the input for CNN. In [5], they com-
pared performances achieved by varying a training setting,
such as segment lengths of 3, 5, and 10 s, and those having
an overlap or not. The experimental results showed that the
use of the segments of 3 s with overlap produced the best
results.

B. Metric learning of similarity between musical pieces using
triplet loss

In deep metric learning [12], it is aimed to automatically
construct a distance metric for a specific task in a machine
learning manner, which generally can find distance metrics
more suitable for the task than handcrafted ones. With a
triplet loss [10], a distance metric is trained with a triplet of
samples, where one is considered as an anchor and the other
two are considered as positive and negative samples. Here,
the positive sample should be more similar to the anchor than
the negative one. Lee et al. [8] proposed computation of the
similarity between musical pieces by metric learning using the

triplet loss. They proposed the track-based similarity which
is learned by triplets of samples extracted using only track
information. Namely, segments from the same track as the
anchor’s one are defined as positive samples, and those from
different tracks from the anchor’s one are defined as negative
samples.

If we use x
(a)
i , x

(p)
i , and x

(n)
i to denote the ith anchor,

positive sample, and negative sample, respectively, the triplet
ti is constructed as a set of {x(a)

i , x
(p)
i , x

(n)
i }, where i =

1, . . . , I denotes the index of training samples. The triplet
loss is defined as

L(ti) = max{d(x(a)
i , x

(p)
i )− d(x

(a)
i , x

(n)
i ) + ∆, 0}, (1)

where d is a distance function for measuring the distance
between two audio samples, such as the Euclidean distance
or cosine distance, and ∆ is a margin value, which defines the
minimum distance between the positive and negative samples.

III. PROPOSED METHOD

To achieve a highly flexible MIR system by making it
possible to handle music similarity from more various per-
spectives than the conventional method focusing on only
the entire musical piece, we propose a music similarity
calculation method that focuses on each instrumental sound
source as a partial element of a piece of music. An overview
of the proposed method is illustrated in Fig.1.

In the proposed method, we apply metric learning with
the triplet loss to individual instrumental sound sources, e.g,
drum, piano, and guitar. Different from genre, artist, and mood
tags, the annotation of tags that represent music similarity
focusing on each instrumental sound is very human-resource-
intensive. Therefore, we use the track-based similarity de-
scribed in Section 2.2 to define the positive and negative
samples. Namely, we define a segment from the same musical
piece as that of the anchor sample as a positive sample and a
segment from a different musical piece as a negative sample.

A network consisting of convolutional layers and a fully
connected layer is used to extract the feature representation
for the music similarity calculation in metric learning. The
network architecture is shown in Fig. 2. Different networks
are separately trained for individual instrumental sounds.
We use cosine distance between the feature representations
to measure the distance between the anchor and positive
samples and that between the anchor and negative samples,
namely, d(xa

i , x
p
i ) and d(xa

i , x
n
i ), respectively. In addition

to the use of recorded instrumental sound sources, we also
apply the proposed method to separated instrument signals,
which are extracted from the mixed music signals by using
an instrumental source separation method assuming that the
recorded instrumental sound tracks are not always available
in practice.
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Fig. 1. Overview of the proposed method. Feature representations for individual instrumental sounds are extracted separately using metric learning with triplet
loss. The x(a), x(p) ,and x(n) denote the anchor, positive ,and negative sample, respectively.

Fig. 2. Network architecture of CNN. The ‘c’, ‘k’, and ‘s’ denote the channel number, kernel size, and stride, respectively. “Conv” and “FC” denote
convolutional layer and fully connected layer, respectively. The numbers above input and output are their data sizes.

IV. EXPERIMENTAL EVALUATION

A. Experimental conditions

The dataset we used is slakh [13], which contains not only
sound sources of a mixture of various instrumental sounds
(hereafter referred to as the mixed sound) but also sound
sources of each instrumental sound (hereafter referred to as
the original instrumental sound). Note that the musical pieces
in this dataset do not contain vocals. We used the original
instrumental sounds of drums, bass, piano, and guitar in the
proposed method to measure music similarity focusing on
the individual instrumental sounds. In addition, we extracted
drums, bass, and piano sounds from the mixed sound using an
instrumental sound source separation method, “spleeter” [14]
in the Python library that could separate a music signal into
drums, bass, piano, vocals, and others, and also used those
three separated sounds (hereafter referred to as the separated
instrumental sounds) in the proposed method to investigate
the effects of using the separated instrumental sounds on

music similarity calculation. Spleeter is an instrumental sound
source separation method using 12-layer U-nets [15]. Its
separation performance for the separated sounds used in
this experiment is shown in Table I. As a reference, we
also calculated music similarity using the mixed sound. This
corresponds to the conventional method. The sampling rate
for all data was 44.1 kHz.

We used 180 musical pieces from the dataset to extract
feature representations in metric learning, split each musical
piece into three-second segments with 50% overlap, and used
the first 40 segments in each musical piece, excluding the
silent parts. In total, 7200 training segments were extracted.
For testing, 19 musical pieces were used, divided into seg-
ments in the same way, and all segments in each musical
piece were used except for the silent parts. These 199 musical
pieces in total were selected from the data set as having no
less than 40 segments in all instrumental sounds when divided
by the method described above, eliminating duplication. The
extracted segments were converted into mel-spectrograms
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TABLE I
Separation performance for the separated sounds used as training data and

test data in the experiment. Note that the SDRs before the separation of
train data are -58.8, -58.8, and -57.3, respectively, when drums, bass, and
piano are used as references. Similarly, the SDRs before the separation of
test data are -63.2, -60.0, and -64.2. These values were calculated using

“fast bss eval” [16].

instrument SDR SIR SAR
train / test train / test train / test

drums -13.9 , -13.7 20.7 , 21.4 -13.8 , -13.7
bass -16.24 , -15.5 8.7 , 9.7 -14.9 , -14.7

piano -15.2 , -14.7 7.8 , 8.4 -13.9 , -13.7

used as the input. Arbitrary anchors were selected from the
mel-spectrograms, and metric learning based on the triplet
loss was performed. The CNN in Fig. 2 was trained to extract
a 128-dimensional embedding vector from a mel-spectrogram
as a feature representation for measuring music similarity. The
margin of the loss function was set to 0.2. A batch size was
set to 64. The number of epochs was set to 150. We trained
the CNN five times by changing initial settings, conducted
evaluations described below using each of them, and averaged
results over these five trials.

B. Evaluation method

As experimental evaluations, we assessed whether the fea-
ture representations were well learned, whether the similarity
based on each instrumental sound was a unique metric, and
whether the similarity corresponded to perception by human
senses.

1) Objective evaluation: In general, feature representations
appropriate for a recommendation system need to satisfy two
properties: (1) feature representations of similar items, i.e.,
segments from the same musical piece, are close to each other,
(2) those of dissimilar items, i.e., segments from different
musical pieces, are far apart from each other according to
the degree of dissimilarity. To evaluate the learned feature
representations, we used the accuracy of music IDs inferred
using close feature representations. Specifically, we used the
K-nearest neighbor (kNN) method to infer the music IDs
of the test segments. The music IDs of all test segments
except the one to be inferred were assumed to be known.
We embedded all test segments into the learned feature
representation space and predicted the music ID of each test
segment by a majority vote using the IDs of the top five
nearest test segments. The averaged accuracy rate of the entire
test dataset over five trials was calculated for each feature
representation space learned by using the mixed sound, the
original instrumental sounds, or the separated instrumental
sounds.

The aim of the proposed method is to construct unique
similarity metrics when focusing on the individual instru-
mental sounds. To evaluate this point, we visualized distance
matrices over centroid feature representations of the 19 test
musical pieces, where the centroid feature representations
were obtained by averaging feature representations over all

segments from the same musical piece. We compared the
averaged distance matrices calculated with the music simi-
larity metrics learned using the mixed sound and the original
instrumental sounds to investigate how different they were.
In addition to visualization, we quantified the difference in
music similarity metrics using a correlation coefficient and
Spearman’s rank correlation coefficient [17]. For a correlation
coefficient, we vectorized the elements in the upper triangular
part excluding the diagonal part of the averaged distance
matrix for each of the original instrumental sounds and the
mixed sound, and we calculated a correlation coefficient
between two vectors of each pair of the averaged distance
matrices. For Spearman’s rank correlation coefficient, we
ranked the musical pieces for each test musical piece using
the averaged distance values, i.e., each column of the averaged
distance matrix, and calculated Spearman’s rank correlation
coefficient between two ranks of each pair of the averaged
distance matrices. The coefficients were calculated for all test
musical pieces and were averaged over them.

2) Subjective Evaluation: To evaluate whether or not the
learned similarity metrics focusing on individual instrumental
sound sources (i.e., the proposed method) or the entire piece
of music (i.e., the conventional method) can find perceptually
similar segments in terms of the focused perspective than
those learned by other types of sound, we conducted a
subjective evaluation. Thirteen listeners participating in the
experiment were asked to listen to audio sets that included
three audio clips, consisting of an anchor and two candidates,
and to select which one was more similar to the anchor.
We also asked the listeners whether they were confident in
their choice. In the listening experiment, we used the original
individual sound source signals rather than the mixed music
signal as the audio clips in order to help listeners easily focus
on each sound source. We provided 40 audio sets to each
listener, which were collected in the following manner.

We used the similarity between the centroid of the feature
representations of each musical piece as the music similarity,
and the top similar musical pieces for each musical piece
were used in the evaluation. A 10-second sample was used
for the evaluation, since it was not possible in time to have the
listeners listen to a whole song. To evaluate each of the music
similarity metrics learned by the original instrumental sounds,
including drums, bass, piano, and guitar, and the mixed
sounds, we made eight valid audio sets for each case (total 40
sets). For clarity of explanation, let us first consider the case of
drums. For each audio set for evaluating the music similarity
metric focusing on drums, we randomly selected a musical
piece to be the anchor. A positive musical piece was then
randomly selected from the first and second similar musical
pieces to the anchor found in the drum sounds similarity. A
negative musical piece was randomly selected from the first
and second similar musical pieces to the anchor found in the
mix sounds similarity. However, the audio set was considered
invalid if at least one of the two candidates for positive and
negative musical piece overlapped. Note that drums sounds
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TABLE II
kNN-based classification accuracy using each feature representation. The
“original” and “separated” columns indicate the original and separated
instrumental sounds, respectively. “mix” denotes the mixed sounds. The

column “variance” shows the variance over the five trials.

original accuracy[%] variance separated accuracy[%] variance
mix 90.52 6.1e-4

drums 93.68 4.5e-5 drums 76.92 1.4e-3
bass 84.63 3.9e-4 bass 41.41 1.4e-3
piano 92.17 3.4e-4 piano 65.69 1.4e-3
guitar 87.59 5.4e-4

Fig. 3. An example of visualized feature representations focusing on the mixed
sound (left) and the drums sound (right). The numbers on the right side of
the color bars show music IDs of 19 test musical pieces. Segments from the
same musical piece are plotted with the same color in both diagrams.

of the musical pieces were presented to the listeners as the
valid audio sets in the case of drums. In the case of the mixed
sound, the positive musical piece was selected in the mixed
sound similarity, and the negative musical piece was selected
in a random instrumental sound similarity, and the mixed
music sounds of the valid audio set were presented to the
listeners. Therefore, the effectiveness of the learned similarity
metrics can be confirmed when the candidate corresponding
to the positive sample in the audio set is selected.

C. Result

1) Objective evaluation: The accuracy rate of the predicted
music IDs is shown in Table II. We found that high accuracies
of about 90% to 95% were obtained in the cases of the
mixed and original instrumental sounds. Accuracies obtained
with the original drums and piano sounds were higher than
those obtained with the mixed sounds, which indicated that
similarity metrics learned using some instrumental source
sounds could lead to more accurate results than those learned
using the entire piece of music. On the other hand, accuracies
of less than 80% were obtained in the cases of the sepa-
rated instrumental sounds. One possible reason causing this
degradation is the lower audio quality of the separated sounds
than of the original ones caused by artifacts and residual
components from other instruments. It is worthwhile to note
that significantly low values of variance were achieved in all
cases, indicating that the similarity metrics could be stably
learned with different initial network parameters using the
triplet loss. An example of the feature representation spaces
is shown in Fig. 3. We used t-SNE [18] to compress the
128-dimensional feature representations to two-dimensional

Fig. 4. Averaged distance matrices of 19 test musical pieces calculated with
the learned music similarity metrics focusing on bass (left) and guitar(right).
These distance matrices illustrate the distance between the centroids of each
musical piece. For example, a value in column 0 and row 10 represents the
distance between the centroids of music no. 0 and music no. 10. The distance
matrices are averaged over five trials. The darker the color between two
musical pieces, the more similar the two pieces are.

TABLE III
Correlation results on the averaged distances over 19 test musical pieces

between different music similarity metrics.

(a) Correlation coefficients
instrument mix drums bass piano guitar

mix 1 0.23 0.11 0.12 0.32
drums 1 -0.0016 0.16 0.025
bass 1 0.021 0.021

piano 1 0.12
guitar 1

(b) Spearman’s rank correlation coefficients
instrument mix drums bass piano guitar

mix 1 -0.020 0.088 -0.082 0.085
drums 1 0.076 0.018 0.086
bass 1 0.038 0.091
piano 1 0.054
guitar 1

representations. We can see that feature representations from
the same musical piece were concentrated, forming clusters.

Figure 4 shows an example of the average distance ma-
trices. We can visually confirm the difference between fea-
ture representation spaces learned with different instrumental
sounds from these examples. Table III shows the correlation
coefficients and the Spearman’s rank correlation coefficients.
Both results with values very close to zero indicated that
unique similarity metrics were learned by using individual
instrumental sounds.

2) Subjective Evaluation: Figure 5 shows the results of
the subjective experiment. “True” and “False” are used to
denote cases of the positive and negative musical pieces being
selected, respectively. “+” and “-” denote that the listener
was confident and not confident in the choice, respectively.
Including less confident choices, listeners selected more than
50% of the positive samples in all the cases, where the
percentages in the mixed, bass, and guitar cases were higher
than 70% as shown in Table IV. These results indicated
that the music similarity metrics learned with the proposed
method focusing on a specific type of sound could find
more perceptually similar segments in terms of the focused
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Fig. 5. Result of subjective evaluation on correspondence of music similarity metrics to perceived similarity.

TABLE IV
True rates and 95% confidence intervals as a result of subjective evaluation

instrument mix drums bass piano guitar
true rate[%] 80.8±7.6 67.3±9.1 76.9±8.1 55.8±9.6 71.2±8.7

perspective, and they well corresponded to the perception of
human senses.

V. CONCLUSION

In this paper, we proposed a music similarity calculation
method focusing on individual instrumental sound sources.
The proposed method learns similarity metrics using deep
metric learning with a triplet loss. Experiments showed that
it was possible to learn the similarity metrics focusing on
different musical instruments. In addition, we found that
similarity metrics learned using some instrumental sounds led
to more accurate results than that learned using the entire
piece of music. However, the performance degraded when
learning with the separated instrumental sounds. The sub-
jective experimental results revealed that the proposed music
similarity metrics well corresponded to perceptual similarity.
Future work includes application to songs that include vocals,
and joint optimization of metric learning and music source
separation.
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