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Abstract—Speaker anonymization has been developed to pro-
tect personally identifiable information while retaining other
encapsulated information in speech. Datasets, metrics, and pro-
tocols for evaluating speaker anonymization have been defined
in the Voice Privacy Challenge (VPC). However, existing pri-
vacy metrics focus on evaluating general speaker individuality
anonymization, which is represented by an x-vector. This study
aims to investigate the effect of anonymization on the perception
of gender. Understanding how anonymization caused gender
transformation is essential for various applications of speaker
anonymization. We proposed speaker anonymization methods
across genders based on phase-vocoder time-scale modification
(PV-TSM). Subsequently, in addition to the VPC evaluation,
we developed a gender classifier to evaluate a speaker’s gender
anonymization. The objective evaluation results showed that our
proposed method can successfully anonymize gender. In addi-
tion, our proposed methods outperformed the signal processing-
based baseline methods in anonymizing speaker individuality
represented by the x-vector in ASVeval while maintaining speech
intelligibility.

I. INTRODUCTION

In recent years, speech communication has been signifi-
cantly developed and utilized in daily applications. However,
many novice users are still unaware of the privacy issues
that may be caused by publicly distributed speech. Speech
encapsulates linguistic-related and biometric-related content
[1]. Therefore, it is vulnerable to being misused by an unau-
thorized person (attacker), e.g., fake speech created with an
advanced speech synthesizer [2], [3]. Consequently, research
on protecting against the emerging threat caused by voice
privacy violations is essential.

One of the solutions is using the speaker anonymization
approach defined in the Voice Privacy Challenge (VPC) [4],
[5], [6]. Speaker anonymization aims to conceal personal
identifiable information (PII) while retaining other informa-
tion. The PII in the VPC is referred to as a state-of-the-art
feature in speech biometric studies and is used for developing
automatic speaker verification (ASV) systems. Subsequently,
reliable speaker anonymization could be achieved when the
anonymized speech causes high errors in the ASV system.
In other words, the anonymized speech from a given speaker
should not resemble any existing speech known by the ASV
system [7].

In an earlier study, methods for anonymizing PII in speech
consisted of combinations of prosodic and spectral modifica-
tions using pitch-synchronous overlap-add algorithm [8] and

the voice transformation techniques described in [9], [10].
Next, the method proposed by Pobar and Ipsic [11] utilized
Gaussian mixture model mapping and harmonic-stochastic
models to anonymize speech individuality. Furthermore, VPC
2020 proposed two baseline speaker anonymization systems
[4]. A neural source-filter (NSF) model and state-of-the-art x-
vector speaker embedding were utilized in the primary baseline
system [12]. Anonymization is performed through the x-vector
that represents PII. Furthermore, modification of the McAdams
coefficient using linear prediction analysis was carried out
in the secondary baseline system [13], [14]. The secondary
baseline is not a machine learning approach; thus, it does
not require a training process. However, the overall speaker
anonymization evaluation results showed that the primary
baseline system outperformed the secondary baseline.

In our previous work [15], we investigated methods based on
the time-scale modification (TSM) signal processing approach
for speaker anonymization according to the VPC protocols.
Unlike vocoder-based systems, such as those from both base-
line systems, the TSM-based approach synthesizes speech via
frame relocation and adaptation [16]. Although it cannot be
used to analyze pitch and timbre independently, the TSM-based
approach was reported to output better quality voices than
those from conventional vocoders [17]. The objective evalu-
ation results showed that the TSM-based method using phase
propagation (PV-TSM) outperformed the secondary baseline
system [15].

Gender is one of the pieces of information included in PII.
How speaker anonymization caused a specific PII (e.g., gender)
perception change has not been defined in the VPC evaluation.
On the other hand, several prior studies indicated that gender
recognition or selection is necessary for speaker anonymization
systems [7], [18], [19], [20], [21]. In addition, the general goal
of speaker anonymization is to change the speaker identity to
a pseudotarget speaker that has different characteristics than
the source speaker (which simply causes a change in gender)
[18].

In this study, we aim to investigate the effect of the F0

modification by speaker anonymization across genders using
the PV-TSM algorithm. The anonymization effect on gender
perception has yet to be investigated in [15]. Understanding
how anonymization caused gender transformation is essential
for speaker anonymization and its applications. Furthermore,
unlike other prior works on gender anonymization, we devel-
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Fig. 1: VPC 2020 ASV evaluation for (a) original trial
and original enrollment (o-o), (b) original enrollment and
anonymized trial (o-a), and (c) anonymized enrollment and
trial (a-a) [4]

oped a voice gender classifier to evaluate gender perception
change in addition to an extensive speaker anonymization
evaluation in the VPC.

The remaining parts of this paper are organized as fol-
lows. Section 2 discusses the speaker anonymization system
according to the VPC. Section 3 introduces the PV-TSM
algorithm for voice gender anonymization. Section 4 describes
our experiments, including the datasets, experimental setup,
and discussion of the results. Finally, Section 5 concludes the
paper and discusses our future work.

II. SPEAKER ANONYMIZATION

A. Definition

Speaker anonymization or speaker deidentification is a
method for concealing the personally identifiable information
of a given speaker and aims to protect voice privacy while
maintaining other information, such as linguistic information
[4], [5]. The VPC initiates the generalization of the speaker
anonymization task and metrics [4]. Speaker anonymization
should satisfy all of the following requirements:

1) It outputs a speech waveform,
2) the speaker identity should be concealed,
3) the output speech should be natural and intelligible, and
4) anonymized utterances of a given speaker should be

perceived as unique from those of other speakers.
Several open-source corpora are utilized in the VPC to de-

velop speaker anonymization systems, including LibriSpeech
[22], LibriTTS [23], VCTK [24], and VoxCeleb-1,2 [25], [26].
The detailed description and statistics of these datasets were
explained in the VPC 2020 evaluation plan [4]. The recent
VPC (VPC 2022) introduced a modified primary baseline
system, an attack model scenario, and additional metrics for
evaluating speaker anonymization [5]. More details about the
update in VPC 2022 are explained in the following subsections.

B. Evaluation Metrics

Assessment of an anonymization system consists of privacy
and utility metrics. The speaker verifiability is used for measur-

ing the privacy metric. The utility metric measures how speaker
anonymization preserves characteristics other than the PII of
the given voice. VPC 2020 [4] introduced an automatic speaker
verification (ASV) system for evaluating speaker verifiability
and an automatic speech recognition (ASR) system for evalu-
ating utility metrics. Hereafter, we refer to the ASV system as
ASVeval 2020 and the ASR system as ASReval. Both of the
systems are trained on the Kaldi toolkit using a subset of the
LibriSpeech dataset (LibriSpeech-train-clean-360) [27].

In VPC 2022 [5], a semi-informed attack model was in-
troduced to evaluate speaker verifiability when an attacker has
prior information about the original speech for enrollment data
and the speaker anonymization system. Hereafter, we refer
to the ASV system for a semi-informed attack as ASVeval
2022. In addition, two complementary utility metrics are also
introduced, namely, pitch correlation (ρF0 ) and gain of voice
distinctiveness GVD. Pitch correlation is used as a measure-
ment to check if the anonymization method preserves the orig-
inal utterance. Furthermore, the gain of voice distinctiveness
measures the voice similarity preservation of utterances from
the same speaker after anonymization.

ASVeval was developed by utilizing probabilistic linear
discriminant analysis (PLDA) on the x-vector (state-of-the-
art speaker embedding) [28]. In ASVeval, the equal error
rate (EER) and log-likelihood-ratio cost function (Cllr and
Cmin

llr , as proposed in [29]) are computed as the objective
verifiability metrics. There are three scenarios for ASVeval-
2020: o–o, o–a, and a–a, as shown in Fig. 1. Moreover, for
ASVeval 2022, the attack model is evaluated only in the
a–a scenario with anonymized data for training the ASV
system. ASReval was developed based on a factorized time
delay neural network (TDNN-F) acoustic model [12], [30]
with a trigram language model using a Kaldi recipe for the
LibriSpeech dataset. The word error rate (WER) is used to
measure the speech intelligibility of the output anonymized
speech.

C. Baseline Systems

In VPC 2020, two speaker anonymization systems were
introduced as the baseline systems [4]. The primary baseline
(B1a) system is based on a deep learning approach using x-
vectors and an NSF model [12]. The second baseline (B2a)
system is based on a signal processing approach using the
McAdams coefficient [13] in linear prediction analysis.

The idea of B1a is to separate linguistic content and
speaker individuality features from the input speech and then
anonymize the extracted speaker individuality features. The
B1a system consists of an F0 extractor, an ASR acous-
tic model, an x-vector extractor, an x-vector anonymization
model, a pool of x-vectors, a speech synthesis AM, and an
NSF model. The x-vector anonymization process is as follows:

1) Feature extraction: extraction of F0, a bottleneck feature
(as linguistic feature representation using an ASR acoustic
model [12], [30]) and a speaker individuality feature (x-
vector based on [28]);
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Fig. 2: Block diagram of the proposed method.

2) X-vector anonymization: modification of the extracted x-
vector by averaging a set of candidate x-vectors from the
pool of x-vectors; and

3) Speech synthesis: speech synthesis using F0, the bot-
tleneck features, and the modified/anonymized x-vector
based on the speech synthesis AM [12] and an NSF [3]
model.

Additionally, extended primary and secondary baseline sys-
tems were introduced in VPC 2022 (B1b and B2b). B1b
utilized a unified HiFi-GAN NSF model as the speech synthe-
sizer. On the other hand, B2b utilized a uniformly randomized
value of the McAdams coefficient (α ∼ U(0.5, 0.9)).

III. PROPOSED METHOD

TSM algorithms are signal processing algorithms that com-
press or stretch audio signals [16]. They are often used in
music processing as well as for speech synthesizers [16],
[17], [31]. This study utilized a TSM algorithm based on
a phase vocoder (PV-TSM) and pitch shifting for speaker
anonymization [15]. The implementation of the PV-TSM algo-
rithm is based on [16]. The PV-TSM improves speech quality
by reducing the artifacts that occur in synthesized speech via
phase propagation [16]. Figure 2 shows the block diagram of
our proposed method.

The modification of the F0 trajectory affects the perception
of speaker individuality [32]. For instance, the F0 range of
female speakers is generally higher than the F0 range of male
speakers. We evaluate the effect of F0 modification on speaker
anonymization using PV-TSM. The anonymization process
follows the following steps:

• First, the original signal (x(r)) is decomposed into a
number of frames (xm(r)). The original frame is then
resampled to increase or decrease F0 with a factor of α

as follows:
α = F0ym(r)/F0xm(r). (1)

where m ∈ Z is the frame index, the sample r ∈ [0, L−1],
and L is the signal length.

• Next, the short-time Fourier transform (STFT) is per-
formed to obtain the frequency spectra of the input signal
X after resampling. This process is expressed as follows:

X(m, k) =

N/2−1∑
r=−N/2

x′
m(r)w(r)exp(−2πikr/N), (2)

where k is the frequency index (k ∈ [0, N − 1]), N is
the frame length, x′

m(r) is the input signal frame after
resampling, w(r) is a Hann window function, and i is
imaginary unit. Complex X(m, k) can also be expressed
as the combination of a magnitude |X(m, k)| ∈ R+ and
a phase φ(m, k) ∈ [0, 1):

X(m, k) = |X(m, k)| exp(2πiφ(m, k)). (3)

• To reconstruct the output signal y(r), we need to concate-
nate the time-domain frames xMod

m by using the inverse
Fourier transform. However, this process caused phase er-
rors or phase jumps in each overlapping frame (as shown
in the frame relocation and adaptation process in Fig. 2).
Consequently, the phase jumps in each overlapping frame
are fixed via phase propagation φMod(m, k). More detail
of phase propagation is available in [16].

XMod(m, k) = |X(m, k)| exp(2πiφMod(m, k)). (4)

• Subsequently, we derive the time-domain frames xMod
m by

using the inverse Fourier transform as follows:

xMod
m (r) =

1

N

N−1∑
k=0

XMod(m, k)exp(2πikr/N). (5)
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• Finally, the signal (y′m(r)) is reconstructed from the
frequency spectra after phase updating XMod, and it is
calculated as follows:

y′m(r) =
w(r)xMod

m (r)∑
n∈Z w(r − nHs)2

, (6)

where Hs is the synthesis hop size. The output
anonymized speech y(r) is obtained by concatenating the
time-domain frames y′m(r) as follows:

y(r) =
∑
m∈Z

y′m(r −mHs). (7)

Several works on F0 modification for speaker anonymization
across gender have been proposed [7], [21]. The results showed
that speaker verifiability could be improved by cross-gender
transformation. Unlike our prior work [15], we carefully
investigate the effect of gender perception caused by F0

modification. We carry out a nonlinear transformation for F0

modification with a factor α in the unit of semitone. We
decrease F0 by α for anonymizing a female voice, while we
increase F0 by α for anonymizing a male voice. Mathemati-
cally, α is expressed by:

α(n) = 2n/12, (8)

where n is the number of semitones for modification. The
ranges of semitones investigated in this study are n ∈ [1, 2],
n ∈ [2, 3], and n ∈ [3, 4]. We later define the proposed methods
with the respective ranges as “PV-TSM-12”, “PV-TSM-23”,
and “PV-TSM-34”.

IV. EVALUATION

To evaluate our proposed methods, we carried out an ob-
jective evaluation based on the protocols and datasets pro-
vided in the VPC [4], [5]. Additionally, we also developed
a gender classifier based on state-of-the-art x-vector embed-
ding to objectively evaluate the effect on gender perception
after anonymization. The description of the dataset, gender
classifier, and evaluation based on the VPC are subsequently
explained.

A. Dataset

We utilized three publicly available open-source corpora for
evaluation. Two corpora were included in the VPC [4], [5]:
LibriSpeech [22] and VCTK [24]. LibriSpeech is an English
corpus that was designed for ASR development. On the other
hand, VCTK is also an English corpus spoken by 109 speakers
with various accents and was designed for text-to-speech
(TTS) development. Each corpus was split into nonoverlapping
training, development, and testing data. The number of female
and male speakers in both corpora are relatively balanced
(approximately 50–55% female and 45–50% male). For the
VCTK dataset, a “common part” and “different part” are
defined in the VPC to evaluate speaker verifiability regardless
of text dependency. The common part consisted of identical
utterances spoken by multiple speakers, while the different part
consisted of distinct utterances spoken by multiple speakers.

We utilized these two corpora for the privacy and utility
evaluation based on the VPC. Additionally, we also utilized
the TIMIT dataset [33] in addition to the LibriSpeech dataset
for constructing the objective gender classifier. TIMIT is an
English corpus with 630 speakers speaking in various dialects
and was designed for the evaluation of an ASR system.
Unlike the LibriSpeech and VCTK corpora, the comparison
between female and male speakers in the TIMIT corpus is
quite imbalanced (70% male and 30% female). The TIMIT
corpus was incorporated to develop a more general classifier
that covers more dialects.

B. Voice Gender Perception Evaluation

The evaluation of voice gender perception assumes that if
the anonymized speech affects the perception of gender from
the original gender existing in the dataset (female or male),
the gender classification accuracy will be reduced. For this
evaluation, we construct a binary classifier based on the state-
of-the-art x-vector speaker embedding model [28]. We fine-
tuned the time-delay neural network (TDNN) model that was
coupled with statistical pooling, and the model was trained
on the VoxCeleb dataset with categorical cross-entropy loss.
The SpeechBrain1 toolkit was utilized to develop the gender
classifier [34]. The training data used for fine-tuning comprises
a subset of the LibriSpeech dataset (train-clean-5) and the
TIMIT dataset. The total number of speakers for training is
490, while for testing, it is 174. The data for training and
testing do not overlap. The overall classification accuracy
of the testing phase in terms of the F1 score is 95.20%.
Furthermore, we evaluate the anonymized speech using this
classifier.

To compare the effect of anonymization with regard to gen-
der, we calculate the accuracy of anonymized speech spoken by
female and male speakers separately and the overall F1 score
for various shift factors α. Figure 3 shows the results of the
gender classification task using the LibriSpeech dataset. The
results show that by increasing or decreasing the F0 trajectory,
the gender perception of the source speakers changed (the
accuracy decreased). This means that gender anonymization
is successful, and the results improved to some extent when
we increased the F0 gap to the original signal based on our
assumption in this evaluation.

C. The VPC Evaluation

We also carried out the VPC evaluation, as described in
Subsection II-B. Since our proposed method is based on a
signal processing approach, we did not train any machine
learning models using the development data. In other words,
the development data used for evaluation can be regarded
as another type of testing data. Additionally, we compared
the performance of the proposed methods with that of the
secondary baselines introduced in VPC 2020 (B2a) and in VPC
2022 (B2b), which were also based on a signal processing
approach.

1https://speechbrain.github.io/
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TABLE I: ASVeval of the VPC 2020 results for the o-a scenario. The direction of the arrow indicates the criteria of a better
anonymization performance.

EER (%) ↑Dataset Gender Weight Orig B2a B2b PV-TSM-12 PV-TSM-23 PV-TSM-34
Source speaker: Female

Libri female 0.50 8.81 35.37 37.93 26.28 35.51 41.34
VCTK (diff) female 0.40 2.92 35.43 35.77 31.5 40.31 45.37Dev
VCTK (comm) female 0.10 2.62 34.01 36.34 32.27 40.7 47.09

Weighted average dev 5.84 35.26 36.91 28.97 37.95 43.53
Libri female 0.50 7.66 26.09 31.39 20.07 34.67 35.4
VCTK (diff) female 0.40 4.94 29.99 36.32 19.5 39.35 42.9Test
VCTK (comm) female 0.10 2.89 30.92 44.51 18.5 36.42 45.09

Weighted average test 6.10 28.13 34.67 19.69 36.72 39.37
Source speaker: Male

Libri male 0.50 1.24 17.86 38.35 8.39 20.81 32.61
VCTK (diff) male 0.40 1.44 28.14 42.33 17.22 33.5 43.87Dev
VCTK (comm) male 0.10 1.43 23.93 45.01 13.11 30.48 39.6

Weighted average dev 1.34 22.58 40.61 12.39 26.85 37.81
Libri male 0.50 1.11 17.82 27.39 12.25 22.94 30.96
VCTK (diff) male 0.40 2.07 28.3 38.12 9.36 25.49 39.27Test
VCTK (comm) male 0.10 1.13 24.29 40.68 7.63 25.42 37.57

Weighted average test 1.50 22.66 33.01 10.63 24.21 34.95

Fig. 3: Results of gender classification on anonymized speech using the LibriSpeech dataset

We utilized the ASVeval in VPC 2020 in three scenar-
ios: (1) original enrollment–original trials (o-o), (2) origi-
nal enrollment–anonymized trials (o-a), and (3) anonymized
enrollment–anonymized trials (a-a). A higher EER in the
ASVeval indicates better privacy preservation (as shown in Fig.
1). The Orig. column in Tables I and II shows the results
of the ASVeval in the o-o scenario. The other columns in
Table I show the results of the ASVeval in the o-a scenario
of the corresponding methods with regard to the gender of
the source speakers. Furthermore, Table II shows the ASVeval
results in the a-a scenario. The a-a scenario considers the
“lazy-informed” attack model (without retraining the ASV
with anonymized speech). We also conducted the evaluation
using ASVeval 2022 (considering the “semi-informed” attack
model). However, since the results are similar to those reported
in [15] and our aim in this study is to investigate the effect
of anonymization on gender perception, we focus on the dis-
cussion of speaker verifiability using the results from ASVeval

2020.

The ASVeval 2020 results indicate that in the o-a scenario,
the proposed methods could give better privacy than the
original secondary baseline (B2a) when the shift factor α is
higher than (1,2). However, the EER of B2a was reduced
significantly in the a-a scenario, which means that privacy is
not well preserved when an attacker has access to the black box
anonymization algorithm [35]. B2b could significantly improve
this shortcoming, but it causes a significant degradation in
speech intelligibility (the WER increased from approximately
19% to 55%, as shown in Table III). Increasing the gap
between α of the anonymized signal and the original signal
results in better privacy for both the o-a and a-a scenarios. For
instance, when α is set to (3,4), the weighted average EER in
the o-a scenario of anonymized test data is improved to 37%,
while the weighted average EER when α is equal to (1,2) and
(2,3) are 15% and 30%, respectively.

To evaluate utility, we used the ASReval provided in VPC
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TABLE II: ASVeval of the VPC 2020 results for the a-a scenario.

EER (%) ↑Dataset Gender Weight Orig B2a B2b PV-TSM-12 PV-TSM-23 PV-TSM-34
Source speaker: Female

Libri female 0.50 8.81 23.58 40.62 36.51 49.01 50.85
VCTK (diff) female 0.40 2.92 15.78 35.93 40.88 44.97 47.16Dev
VCTK (comm) female 0.10 2.62 11.63 54.36 41.28 48.26 49.71

Weighted average dev 5.84 19.27 40.12 38.74 47.32 49.26
Libri female 0.50 7.66 15.15 42.70 27.37 35.95 40.15
VCTK (diff) female 0.40 4.94 16.98 31.02 49.33 49.79 51.44Test
VCTK (comm) female 0.10 2.89 14.45 38.15 48.55 50.87 52.89

Weighted average test 6.10 15.81 37.57 38.27 42.98 45.94
Source speaker: Male

Libri male 0.50 1.24 10.56 43.63 29.04 42.39 47.67
VCTK (diff) male 0.40 1.44 11.12 43.37 31.71 31.86 31.22Dev
VCTK (comm) male 0.10 1.43 10.54 46.44 36.75 42.45 41.03

Weighted average dev 1.34 10.78 43.81 30.88 38.18 40.43
Libri male 0.50 1.11 8.46 47.66 29.18 42.76 44.77
VCTK (diff) male 0.40 2.07 12.23 38.92 31.80 45.24 51.95Test
VCTK (comm) male 0.10 1.13 11.86 46.61 33.05 46.61 47.18

Weighted average test 1.50 10.31 44.06 30.62 44.14 47.88

TABLE III: ASReval of the VPC 2020 results.

WER (%) ↓Dataset Orig B2a B2b PV-TSM-12 PV-TSM-23 PV-TSM-34
Libri 3.83 8.74 36.42 4.59 5.23 6.16Dev VCTK 10.79 25.56 52.09 12.59 14.32 16.51

Average-dev 7.31 17.15 44.26 8.59 9.78 11.34
Libri 4.14 8.90 48.12 4.85 5.53 6.26Test VCTK 12.81 28.15 62.35 14.97 16.49 18.66

Average-test 8.48 18.53 55.24 9.91 11.01 12.46

2020. Table III shows the utility evaluation results in terms
of speech intelligibility (the WER). High utility is achieved
when speech intelligibility can be preserved (the WER is as
close to the original utterances as possible). Based on this
definition, our results indicate that the speech intelligibility of
anonymized signals obtained by PV-TSM methods are better
than those obtained by the speaker anonymization methods
that use the McAdams coefficient (B2a and B2b). Increasing
the gap between α of the anonymized signal and the original
signal caused slightly more distortion (the WER increased by
< 5%).

Furthermore, we illustrate the performance in terms of the
privacy metric and utility metrics in Fig. 4 on four different
categories based on gender and enrollment–trials scenarios.
The first row shows the privacy versus utility results in the
o-a scenario. Moreover, the second row shows the privacy
versus utility results in the a-a scenario. All subfigures indicate
that the proposed methods can better balance the privacy
and utility metrics than the secondary baseline methods (B2a
and B2b). The privacy preservation of B2b is comparable
to that of PV-TSM-23; however, its utility preservation is
greatly reduced. Considering the gender of the source speakers,
the anonymization of female speakers has a better balance
of privacy and utility than from the anonymization of male

speakers in both the o-a and a-a scenarios.
In addition to ASReval, we also carried out an evaluation

using the secondary utility metrics described in VPC 2022
[5]. The secondary utility metrics include pitch correlation
and the gain of voice distinctiveness. The average pitch cor-
relation values of PV-TSM-12, PV-TSM-23, and PV-TSM-34
are 0.87, 0.85, and 0.82, respectively. The average gain of
voice distinctiveness of the proposed methods with any α is
between -2.00 and -1.20. The results obtained by these two
utility metrics indicate that our proposed method can preserve
other speech attributes to some extent, as described in the VPC
2022 evaluation plan [5].

D. Limitations

An extensive objective evaluation was carried out to evaluate
the proposed methods. The results of the proposed methods
showed superior performance in comparison to the secondary
baseline systems. However, the aim of speaker anonymization
is to conceal the PII, and using only the objective evaluation
results is not conclusive. In addition, there is no ground truth
(label) for speaker anonymization. For instance, the objective
evaluation based on a gender classifier could only indicate that
most of the anonymized female voice was no longer recognized
as a female voice (an increased classification error). For further
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Fig. 4: Privacy vs utility plot based on ASVeval and ASReval of VPC 2020 using the test dataset.

analysis, a subjective evaluation is required to evaluate more
detailed anonymization performance in the future.

Another limitation is that the prosodic feature that we
considered in this study is limited to F0. In the future, we
will consider other speaker individuality features to improve
anonymization performance. Additionally, the PII investigated
in this study is limited to the speaker’s gender perception.
More attributes are included in the PII that are worth further
investigation.

V. CONCLUSIONS

This study demonstrated the effect of F0 trajectory modi-
fication on speaker anonymization based on PV-TSM in the
perception of a speaker’s gender. To evaluate the effectiveness
of anonymization on gender, we developed a binary classifier
based on x-vector speaker embedding. In addition, we also
carried out an objective evaluation for speaker anonymization
based on the VPC. The results showed that the proposed
methods could successfully anonymize a speaker’s gender
(in terms of gender classification accuracy) and general PII

(in terms of privacy and utility metrics in the VPC). In the
future, we will carry out a subjective evaluation to carefully
investigate speaker anonymization performance. In addition,
further attributes in PII will also be investigated as the objective
of anonymization.
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P.-G. Noé, A. Nautsch, N. Evans, J. Yamagishi, B. O’Brien, A. Chanclu,
J.-F. Bonastre, M. Todisco, and M. Maouche, “The voiceprivacy 2020
challenge: Results and findings,” Comput. Speech Lang., vol. 74, no. C,
jul 2022. [Online]. Available: https://doi.org/10.1016/j.csl.2022.101362

[7] J. Přibil, A. Přibilová, and J. Matoušek, “Evaluation of speaker de-
identification based on voice gender and age conversion,” Journal of
Electrical Engineering, vol. 69, pp. 138–147, 03 2018.

[8] H. Valbret, E. Moulines, and J. Tubach, “Voice transformation
using psola technique,” Speech Communication, vol. 11, no. 2,
pp. 175–187, 1992, eurospeech ’91. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/016763939290012V

[9] Q. Jin, A. R. Toth, A. W. Black, and T. Schultz, “Is voice transfor-
mation a threat to speaker identification?” in Proceedings of the IEEE
International Conference on Acoustics, Speech, and Signal Processing,
ICASSP 2008, Caesars Palace, Las Vegas, Nevada, USA. IEEE, 2008,
pp. 4845–4848.

[10] Q. Jin, A. R. Toth, T. Schultz, and A. W. Black, “Speaker de-
identification via voice transformation,” in 2009 IEEE Workshop on
Automatic Speech Recognition & Understanding, ASRU 2009, Mer-
ano/Meran, Italy, December 13-17, 2009. IEEE, 2009, pp. 529–533.

[11] M. Pobar and I. Ipsic, “Online speaker de-identification using voice
transformation,” in 37th International Convention on Information and
Communication Technology, Electronics and Microelectronics, MIPRO
2014, Opatija, Croatia. IEEE, 2014, pp. 1264–1267.

[12] F. Fang, X. Wang, J. Yamagishi, I. Echizen, M. Todisco, N. W. D.
Evans, and J. Bonastre, “Speaker anonymization using x-vector and
neural waveform models,” CoRR, vol. abs/1905.13561, 2019.

[13] S. McAdams, “Spectral fusion, spectral parsing and the formation of
auditory images,” Ph. D. Thesis, Stanford, 1984.

[14] J. Patino, N. A. Tomashenko, M. Todisco, A. Nautsch, and N. W. D.
Evans, “Speaker anonymisation using the McAdams coefficient,” CoRR,
vol. abs/2011.01130, 2020.

[15] C. O. Mawalim, S. Okada, and M. Unoki, “Speaker Anonymization by
Pitch Shifting Based on Time-Scale Modification,” to appear in the 2nd
Symposium on Security and Privacy in Speech Communication joined
with 2nd VoicePrivacy Challenge (SPSC 2022), 2022.

[16] J. Driedger and M. Müller, “A review of time-scale modification of music
signals,” Applied Sciences, vol. 6, p. 57, 2016.

[17] M. Morise, “Platinum: A method to extract excitation signals for voice
synthesis system,” Acoustical Science and Technology, vol. 33, no. 2,
pp. 123–125, 2012.

[18] C. Magariños, P. Lopez-Otero, L. Docio-Fernandez, E. Rodriguez-
Banga, D. Erro, and C. Garcia-Mateo, “Reversible speaker de-
identification using pre-trained transformation functions,” Computer
Speech & Language, vol. 46, pp. 36–52, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0885230816302959

[19] M. Faundez-Zanuy, E. Sesa-Nogueras, and S. Marinozzi, “Speaker
identification experiments under gender de-identification,” in 2015 Inter-
national Carnahan Conference on Security Technology (ICCST), 2015,
pp. 1–6.

[20] M. Abou-Zleikha, Z.-H. Tan, M. G. Christensen, and S. H. Jensen, “A
discriminative approach for speaker selection in speaker de-identification

systems,” in 2015 23rd European Signal Processing Conference (EU-
SIPCO), 2015, pp. 2102–2106.

[21] P. Champion, D. Jouvet, and A. Larcher, “A study of f0 modification for
x-vector based speech pseudonymization across gender,” 2021.

[22] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
An ASR corpus based on public domain audio books,” in 2015 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2015, pp. 5206–5210.

[23] H. Zen, V. Dang, R. Clark, Y. Zhang, R. J. Weiss, Y. Jia, Z. Chen,
and Y. Wu, “LibriTTS: A Corpus Derived from LibriSpeech for Text-to-
Speech,” in Interspeech 2019, 20th Annual Conference of the Interna-
tional Speech Communication Association, Graz, Austria. ISCA, 2019,
pp. 1526–1530.

[24] C. Veaux, J. Yamagishi, and K. Macdonald, “CSTR VCTK Corpus:
English Multi-speaker Corpus for CSTR Voice Cloning Toolkit,” in
arXiv, 2017.

[25] J. S. Chung, A. Nagrani, and A. Zisserman, “VoxCeleb2: Deep Speaker
Recognition,” in Interspeech 2018, 19th Annual Conference of the
International Speech Communication Association, Hyderabad, India, 2-6
September 2018. ISCA, 2018, pp. 1086–1090.

[26] A. Nagrani, J. S. Chung, and A. Zisserman, “VoxCeleb: A Large-
Scale Speaker Identification Dataset,” in Interspeech 2017, 18th Annual
Conference of the International Speech Communication Association,
Stockholm, Sweden, August 20-24, 2017. ISCA, 2017, pp. 2616–2620.

[27] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The kaldi speech recognition toolkit,” in IEEE
2011 Workshop on Automatic Speech Recognition and Understanding,
Hawaii, US. IEEE Signal Processing Society, Dec. 2011.

[28] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudanpur,
“X-Vectors: Robust DNN Embeddings for Speaker Recognition,” in
2018 IEEE International Conference on Acoustics, Speech and Signal
Processing, ICASSP 2018, Calgary, AB, Canada. IEEE, 2018, pp.
5329–5333.
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