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Abstract—With increasing aging, sympathetic educational-
support robots (sympathetic robots) that can assist young learners
have been attracting the attention of researchers. However, the
visually-driven interactions (emotional body motions and facial
expressions of robots) that have been studied don’t provide
sufficiently good interactivity and may distract learners. In this
paper, we develop an emotional text-to-speech (TTS) synthesis
system to be implemented for sympathetic robots. As a speech
system oriented to be equipped with sympathetic robots that can
speak and express their own emotions by voice, the control of
variable emotional expression in the synthesized speech during
interaction needs to be fully considered. Towards the development
of sympathetic robots providing sufficiently good interactivity,
we propose an emotional TTS system architecture using both a
global style tokens (GSTs) module and a set of arousal-valence
tokens to flexibly control the emotional expression of synthesized
speech by two interpretable annotations, categorical and dimen-
sional, respectively. The experimental results demonstrate that
our model can flexibly control the emotional expression of the
synthesized speech and can satisfy the demand of the application
to sympathetic robots.

Index Terms: educational-support robots, speech synthesis,
prosody control, human-robot interaction

I. INTRODUCTION

In recent years, educational support robots that can support
learners have attracted increasing attention. A problem with
these educational support robots is that learners find the robots’
behavior too monotonous, which makes collaborative learning
with robots rather boring [1]. To address this problem, previous
research has proposed a sympathy expressions method [2],
where the robot expresses emotions similar to those of the
learner’s emotions, thus resonating with the learner. The sym-
pathy expressions method (SEM) is based on Russell’s circum-
plex model (also called emotional space [3]) for expressing
emotion, which is based on some of the learner’s behaviors
during the learning process (e.g. the number of correct answers
or the time taken to answer the questions.). The educational-
support robots equipped with the SEM are called sympathetic
educational support robots, abbreviated as sympathetic robots
in this paper.

With sympathetic robots, emotional expressions based on
body motions and facial expressions were discussed [4] in
conventional studies. However, the robot’s body motions and
facial expressions are visually driven interactions. The learner
needs to take their eyes off the tasks they are focusing on to
complete the interaction process. This may lead to interruptions
in the learning process and distract the learner’s attention. And
based on past research in human-robot interaction, speech is
also an effective form of emotional expression for robots. In
the case of learning support robots, auditory-driven interaction
can provide a sense of companionship while ensuring the
continuity of the learning process. Therefore, we implement
a speech synthesis system for the development of sympathetic
robots.

The current development of the neural speech synthesis
model has been accompanied by a large amount of research fo-
cusing on high-quality speech synthesis. This allows interactive
devices to use high-quality speech to complete the interaction
process. To achieve more fluid interaction scenarios, emotional
speech synthesis systems are also widely used in the process
of human-robot interaction [5]. In these studies, interactive
devices have achieved not only communication of content but
also speech-based communication of emotion, which enables
human-robot interaction closer to natural communication. In
our study, we focus on educational-support robots that extend
the function of sympathy expression based on emotional
expression. Thus, we attempt to use synthesized speech to
achieve the functions of content delivery, emotion expression,
and sympathy expression in the interaction process.

In this paper, towards the development of flexible emotion
control required for sympathetic function, we implement a
speech synthesis system based on the need.

1) Emotional control of synthesized speech using emotional
labels (categorical annotations).

2) Emotional change of synthesized speech using arousal-
valence values (dimensional annotations) based on emo-
tion space.

3) High-quality emotional speech synthesis by using a
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high-performance speech synthesis framework Fast-
speech2 [6] as a backbone.

II. RELATE WORK

A. Sympathy Expression Method and Sympathetic Robots

The sympathy expression method (SEM) is an approach
proposed to alleviate the monotony of the robot for the learner
during an interaction, which is a method of making the
robot capable of sympathy with the learner based on Russel’s
circumplex model [3]. In Fig. 1, there are 12 categories of
emotions, and each emotion has strong and weak aspects
in the conventional SEM. During the emotional expressive
processing, the emotions are expressed using positive (A⃗)
and negative (B⃗) vectors based on a judgment (e.g. fast or
slow writing time, correct or incorrect answers to questions).
Equipped with the SEM, the sympathetic educational-support
robots, called sympathetic robots, are constructed.

In conventional research, two emotional expression methods
of sympathetic robots through facial expressions and body
motions were studied. Twenty-four (12 emotional categories
and each emotion have 2 levels ”strong” and ”weak”) facial
expressions and body motions are designed manually in each
study and are used for the emotional expression of the sym-
pathetic robot. The sympathetic robot can express its emotion
(e.g. Fig. 2) and sympathy to the learner, with the SEM and
some kinds of emotional expression methods in the learning
interaction processing.

However, while visually-driven interaction somewhat alle-
viates the monotony of robot companionship, there is a risk
of interrupting the learning process of the learner. Therefore,
our study uses a more natural method, speech interaction, for
semantic expression, emotional expression and sympathetic
expression. The use of auditory-driven interaction allows the
learner to live with a sufficient sense of companionship while
reducing learner gaze shift so that can focus more on the
current learning process. In addition, the auditory-driven in-
teraction method is the basis for further implementation of
audiovisual integration of interaction of sympathetic robots.

B. Emotional Control Text-to-Speech

With the development of end-to-end models of deep neural
networks, such as Tacotron2 [7], it is possible to obtain
high-quality natural synthesized speech. Fastspeech [8] and
Fastspeech2 [6] are the non-autoregressive TTS models which
improve training speed and show fast synthesis speed in the in-
ference. These neural TTS models generate a mel-spectrogram
from the text and then convert the mel-spectrogram into a
speech waveform using vocoders such as Griffin-Lim [9] and
HiFiGAN [10]. However, the emotional expression of the
synthesized speech of these models depends on the training
dataset but has little control over the emotional expression of
each sentence.

To address this issue, the process of the emotional control
module is added to the model of speech synthesis. The GSTs
module [11] has been jointly trained with Tacotron, which is a
set of style tokens containing acoustic variations. The module

Fig. 1: The sympathy expression method is based on emotional
space (Russell’s circumplex model). [2]

Fig. 2: An educational-support robot express ”happy” by the
combination of facial expression and body motion.

takes a reference speech as input and outputs the corresponding
style embedding as an input feature to the TTS model. In
Sivaprasad et al. [12] an interpretable emotional expression
intensity control method was proposed. In this study, arousal-
valence values are input into a prosody control block, which
are used as weights of learnable tokens (arousal tokens and
valence tokens). Two token learned arousal-valence-related
features during the training and the block input arousal-valence
values can change during the inference to change the emotional
expression intensity of synthesized speech, achieving an inter-
pretable emotional control of emotional speech synthesis by
using the emotional space-based arousal valence.

Toward the robotic study, the demand for smooth human-
robot interaction should be considered based on conventional
speech synthesis systems. The single module of emotion ex-
pression control in past studies does not accomplish both emo-
tional expression and sympathy expression (emotion change)
of the sympathetic robots. Thus we attempt to combine the
emotion category control and emotion expression intensity
control modules to implement an emotional speech synthesis
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model to meet the diverse emotional expression demand of
sympathetic robots.

III. PROPOSED METHOD

Considering the past research, the functionalities of a speech
synthesis system for sympathetic robots are clarified, (1) syn-
thesize emotional speech with a specified emotional category,
and (2) synthesize emotional speech with the controllable
intensity (”strong” and ”weak” levels) of emotional expression.
Due to the limited and small number of emotional category
labels usually available in the corpus for training emotional
speech synthesis models, it is difficult to achieve flexible and
diverse emotion variations in synthesized speech using only
discrete emotion labels for training.

To address this problem, not only the categorical but also di-
mensional annotations of the emotion are used in the proposed
model training. The arousal and valence values are used as the
dimensional annotations in our study. Arousal is the level of
autonomic activation that an event creates, and ranges from
calm (or low) to excited (or high) and valence is the level
of pleasantness that an event generates and is defined along
a continuum from negative to positive. They are the vertical
and horizontal axes of Russel’s circumplex model (emotional
space circle, in Fig. 1) respectively, which can be used as
a measurement of SEM. All arousal and valence values are
provided by the 5-point self-assessment method [13], which
directly measures the valence and arousal associated with a
person’s affective reaction to a wide variety of stimuli (in
this study the stimuli is speech). In the proposed model,
the emotional categories information controls the specified
emotional category of synthesized speech and the arousal-
valence value controls the emotional expression intensity of
synthesized speech instead of ”strong” and ”weak” levels’
labels.

The proposed model (shown in Fig. 3) consists of two main
components, a synthesis component and a control component.
Fastspeech2 [8] is used as the synthesis component, which is a
non-autoregressive text to mel-spectrogram generation model
that ensures high-quality synthesized mel-spectrogram synthe-
sis. On the other hand, for the control component, as mentioned
earlier, the emotional expression and sympathetic expression
of sympathetic robots are by using the arousal-valence value
based on emotional space. Also based on the explicit need
for emotional expression, emotion categories are introduced
into the speech emotion control process. Furthermore, with
the multi-speaker dataset being used for training, the speaker
identifies control also considered in the proposed model.
These three modules are the control component, GSTs mod-
ule [11] and arousal-valence (A-V) tokens module [12], and a
speaker encoder implemented in the model structure. They can
embed emotion category information, arousal-valence values
information (which is related to the intensity of emotional
expression), and speaker information for speech synthesis,
respectively. The E1 and E2 embeddings sequences in Fig. 3
are considered as the input of the variance adaptors module,
which determines the pitch, duration and energy and impacts

the emotional expression of the synthesized speech. By the
emotional categories control and the arousal-valence values
(interpretable in emotion space) control, the proposed structure
achieves interpretable emotional control.

There are two stages in training. In stage 1, a high-quality
normal speech dataset is used to train the pretrained Fast-
speech2 model for high-quality speech synthesis. In stage 2,
an emotional speech dataset is used for learning the emotional
expression features. To address insufficient quality and the
limited size of the emotional speech dataset, the pre-trained
Fastspeech2 parameters are input into the proposed structure
and the phone encoder, encoder and decoder are frozen during
the stage 2 training, to ensure high-quality synthesis.

(a) the overview of model structure

(b) The variance adaptors

Fig. 3: The proposed emotional TTS model architecture

IV. EXPERIMENTS

A. Experimental conditions

We used LibriTTS corpus [14] as a high-quality normal
speech dataset and IEMOCAP corpus [15] as an emotional
speech dataset in the training. Four emotions (neutral, angry,
sad, happy) speech samples from the 10 speakers (5 male
speakers and 5 female speakers) in the IEMOCAP corpus were
used for training. The arousal-valence values were provided
for each sample in the IEMOCAP corpus by a 5-point self-
assessment method [13] also used. The ”Fastspeech2+GSTs”
and the ”Fastspeech2+A-V tokens” were trained as the baseline
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TABLE I: The MOS with 95% confidence intervals

Naturalness MOS
Fastspeech2 3.61 ± 0.11
Proposed model 3.58 ± 0.08
Emotional Category Assess Accuracy in %
Fastspeech2+GSTs 62.5%
Proposed model 64.6%
Expressive Intensity Assess Accuracy in %
Fastspeech2+A-V tokens 80.6%
Proposed model 84.3%

models, without the arousal-valence tokens module and GSTs
module in the control component, respectively.

For the evaluation of the proposed model, three assess-
ments, (1) naturalness, (2) emotional category control, and
(3) expressive intensity control, were conducted. In the nat-
uralness evaluation, the pre-trained Fastspeech2 is used as the
baseline to compare voice quality with the proposed model.
Forty samples were synthesized for the experiment from the
baseline and the proposal, respectively, by texts which are from
the IEMOCAP corpus unseen in training. In the emotional
category control assessment, the emotional TTS model ”Fast-
speech+GSTs” is used as a baseline. Twelve samples of each
emotional category, in total, 48 samples were synthesized from
each model (baseline and proposal) by texts and emotional
categories input data from the IEMOCAP corpus unseen in
training. The subjects were asked to listen to synthesized
speech samples and select the emotion category corresponding
to this sample. In the expressive intensity control assessment,
the ”Fastspeech2+A-V tokens” is considered as the baseline.
Two synthesized samples were taken as a group synthesized
by related synthesis conditions. One input for inference is
called ”original input”, which is a sample from the IEMOCAP
corpus unseen in training. And the other input is called
”manual input”, gets by modifying the arousal-valence value
of the ”original input” to a selected suitable arousal-valence
value based on the emotional space. Different arousal-valence
values will determine the ’weak’ and ’strong’ expressions of
synthesized speech. Eight groups of each emotional category
(without ’neutral’), in total, 48 samples of each model were
used in the experiment. The subjects were asked to select the
samples with stronger expressions in the samples of different
intensities (’weak’ and ’strong’).

Thirteen subjects participated in each evaluation experiment.
HiFi-GAN [10] was used as a vocoder for converting mel-
spectrogram to waveform in this experiment.

B. Results

The results of three experiments are in Table I.
Naturalness Evaluation: To evaluate the naturalness of the

synthesized speech, the subject is asked to make quality
judgments about the naturalness using the Mean Opinion Score
(MOS). The MOS on 1 to 5 (1 is ”completely unnatural” and 5
is ”completely natural”) is used as a measure in the subjective
test of naturalness. As the results in Table I, we find that our
model performs similarly in the naturalness of the synthesized
speech compared to an original Fastspeech2.

Emotional Category Control Assess: In this assessment,
the emotional similarity of synthesized speech is evaluated.
The listeners were asked to select the emotion category that
was closest to the emotion expressed in the heard synthe-
sized speech sample. Also, subjects were asked to judge the
emotional category without considering the textual content
contained in the synthesized speech samples. The accuracy of
the selected results is used as the measure. The results indicate
that the emotional expression categories of the synthesized
speech of the proposed model and the baseline model are
recognizable and the proposed model is better than the baseline
model.

Expressive Intensity Control Assess: In the expressive in-
tensity assessment, subjects were asked to distinguish the
differences in the intensity of emotional expression in a sample
group (including a ”strong” sample and a ”weak” sample). The
accuracy of the ”strong” sample being selected is used as the
measure. The result shows that the different intensity expres-
sion control by arousal-valence values change is feasible. And
the proposed model performed better than the baseline in this
assessment.

V. CONCLUSIONS AND FUTURE WORK

Our work implements an emotional speech synthesis model
for the sympathetic educational-support robots. The Fast-
speech2 model is used as the backbone which ensures the
synthesis speed and the quality of the synthesized speech. The
GSTs module and arousal-valence tokens module provide the
encoding of emotional categorical attributes and dimensional
attributes, respectively, to achieve emotional control during the
synthesis. The discrete emotion categorical labels and arousal-
valence values based on interpretable emotion space are used
to control the emotional expression of synthesized speech.
The evaluated results show that the proposed model can
meet the requirements for applying a sympathetic educational-
support robot. The proposed model can control both cate-
gory and intensity of emotional expression, which achieve a
flexible method of emotional expression for the sympathetic
educational-support robot during the interaction.

In future research, we will evaluate the performance of a
sympathetic robot equipped with the proposed speech synthesis
system in a real interaction scenario. Moreover, improving
the interpretable expressive performance of the emotional
synthesis speech system is one of our future research purposes.
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