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Abstract—In this paper, we deal with a dual-channel target
speaker extraction (TSE) problem under underdetermined con-
ditions. For the dual-channel system, the generalized sidelobe
canceller (GSC) is a commonly used structure for estimating a
blocking matrix (BM) to generate interference, and geometric
source separation (GSS) can be used as an implementation
of BM estimation utilizing directional information. However,
the performance of the conventional GSS methods is limited
under underdetermined conditions because of the lack of a
powerful source model. In this paper, we propose a dual-channel
TSE method that combines the ability of target selection based
on geometric constraints, more powerful source modeling, and
nonlinear postprocessing. The target directional information is
used as a geometric constraint, and two conditional variational
autoencoders (CVAEs) are used to model a single speaker’s speech
and interference mixture speech. For the postprocessing, an ideal
ratio Time–Frequency (T-F) mask estimated from the separated
interference mixture speech is used to extract the target speaker’s
speech. The experimental results demonstrate that the proposed
method achieves 6.24 dB and 8.37 dB improvements compared
with the baseline method in terms of signal-to-distortions ratio
(SDR) and source-to-interferences ratio (SIR) respectively under
strong reverberation for 470 ms.

Index Terms—multichannel source separation, target speaker
extraction, multichannel variational autoencoder (MVAE)

I. INTRODUCTION

Target speaker extraction (TSE) aims to extract a target
speaker’s voice from mixed signals, which is desired for nu-
merous applications like speech recognition systems and smart
home devices. Over the past few decades, various methods
based on blind source separation (BSS) [1] [2] have been
applied to this task. Most BSS methods are often designed
for determined conditions where the number of microphones
M is equal to the number of sources N (M = N ), and their
performance depends on the number of microphones. However,
in realistic applications, many devices are often equipped with
only a few microphones because of the hardware limitation or
efficiency, and many real-world TSE tasks need to deal with
scenarios with many speakers, which is insufficient to meet the
determined condition. Therefore, TSE under underdetermined
cases has become interesting and challenging research.

Generalized sidelobe canceller (GSC) [3] [4] is one of
the implementations of underdetermined TSE, which can be
interpreted as three main components: a fixed beamformer

for target enhancement, a blocking matrix (BM) that provides
an estimation of interference by suppressing the target signal
only, and an adaptive canceller that serves as a postfilter. A
good estimation of BM is important for TSE [5]. Imposing a
Geometric Constraint (GC) based on spatial information like
direction-of-arrival (DOA) on the BSS method is effective in
the BM estimation, which yielded many geometric source sep-
aration (GSS) methods [6]–[11]. For example, Geometrically
constrained independent vector analysis (GCIVA) [11] [12]
is a well-known method, which combines linear GC derived
from prior spatial information with independent vector analysis
(IVA) [13] [14]. However, these GSS methods are designed for
determined cases, and their performance for underdetermined
TSE is limited. Recently, a Bayesian framework-based GCIVA
has been proposed, which introduces a Background (BG)
source model derived from the Independent Vector Extraction
(IVE) [15] that allows for underdetermined cases to extract
the Source Of Interest (SOI) [16]. This method models all
background signals except the SOI, including speech, white
noise, and diffuse sound fields. On the other hand, it is not
straightforward to accurately model various types of back-
ground signals.

For TSE under underdetermined cases, a powerful source
model is required because the source model not only needs
to deal with the target speaker’s voice but also needs to deal
with the multi-speaker interference mixture. Many efforts have
been done in developing the source model of the speech
signal. Independent low-rank matrix analysis (ILRMA) applied
a flexible source model of nonnegative matrix factorization
(NMF) decomposition in the IVA framework, which yielded
a better modeling power of complex spectral structures than
former IVA with a Laplace distribution-based source model
[17]. Most recently, the deep neural network (DNN) has been
used to model the source spectral characteristics owing to
its powerful modeling capability [18] [19]. The multichannel
variational autoencoder (MVAE) method [20] utilizes the con-
ditional variational autoencoder (CVAE) [21] as the generative
source model in an IVA framework under determined cases and
has attracted attention.

In this paper, we propose a novel dual-channel TSE method
under underdetermined conditions, which combines GC-based
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TSE, the CVAE-based source model, and an ideal ratio
time-frequency (T-F) mask-based postprocessing. Inspired by
MVAE, we innovatively model the target and interference
mixture separately using two types of CVAE to better handle
underdetermined cases. We design an iterative TSE algorithm
based on the GSC structure with linear GCs and the target and
interference mixture source modeling with CVAEs to provide a
good estimate of interference mixture when only the direction
of the target is known. Experimental results show that our
trained CVAE is powerful in modeling clean speech and mixed
speech and the combination of GC and CVAE-based source
model leads to a significant improvement in TSE tasks under
underdetermined conditions.

II. PROBLEM FORMULATION OF GSS

Let us consider a TSE problem where a dual-channel
microphone array is used. Let s(f, n) and x(f, n) be the short-
time Fourier transform (STFT) coefficients of the source and
observed signals, where f and n are the frequency and time
indices. We represent:

s(f, n) = [s1(f, n), s2(f, n)]
T , (1)

x(f, n) = [x1(f, n), x2(f, n)]
T , (2)

where s1(f, n) is the target with a known DOA and s2(f, n)
is the interference mixture except the target. x1(f, n) and
x2(f, n) are the observed signals of two input channels. We
use a separation system as

s(f, n) = WH(f)x(f, n), (3)
W(f) = [w1(f),w2(f)], (4)

where W(f) is called a demixing matrix and s(f, n) is an
estimate of the target and interference mixture. w1(f) is used
to enhance the target while w2(f) is used to estimate the
interference by suppressing the target.

Let us assume that source signals follow the local Gaussian
model (LGM) [23], i.e., sj(f, n) independently follows a
zero-mean complex Gaussian distribution with the variance
vj(f, n) = E[|sj(f, n)|2]. We further assume that s1(f, n) and
s2(f, n) are independent of each other. s(f, n) then follows:

s(f, n) ∼ NC(s(f, n)|0,V(f, n)), (5)

where V(f, n) = diag[v1(f, n), v2(f, n)]. From Eqs. (3) and
(5), we can show that x(f, n) follows:

x(f, n) ∼ NC(x(f, n)|0, (WH(f))−1V(f, n)W(f)−1). (6)

The log-likelihood of W = {W(f)}f is given by:

log p(X|W,V) c
= 2N

∑
f

log|detW(f)|

−
∑
f,n,j

(log vj(f, n) +
|wH

j (f)x(f, n)|2

vj(f, n)
), (7)

where c
= denotes equality up to constant terms and source

model parameters are represented as V = {vj(f, n)}j,f,n.
Now, let us consider geometric constraints [6] restricts the

far-field response of the jth demixing filter in the target
direction α, which is described as

Jb(W) =
∑
j

λj

∑
f

|wH
j (f)d(f, α)− bj |2, (8)

where d(f, α) is a steering vector toward α, and λj is a
weighting parameter on the geometric constraints in the jth
channel. bj ≥ 0 is the parameter to control the beam pattern. If
bj = 1, the corresponding wj(f) is estimated to form a delay-
and-sum (DS) beamformer [24] toward α to preserve the target.
While bj with a small value can generate a null beamformer
to suppress the target, which produces a good estimate of the
interference mixture. The overall objective function is

J(W,V) = − log p(X|W,V) + Jb(W) (9)

III. DIRECTION-AWARE TSE METHOD UNDER
UNDERDETERMINED CASES

A. Overview

Under underdetermined cases, the source model needs to
handle not only the target speaker’s voice but also the inter-
ference mixture. Inspired by MVAE and GSS, we proposed a
target extraction method that combines a well-designed GC-
based GSC structure and the powerful modeling ability of
CVAE.

Figure 1 shows the framework. DOA of the target speaker
is used to design Jb(W), which creates a null beamformer
towards the direction of the target speaker on the interfer-
ence channel. Such a spatial filter can serve as a blocking
matrix (BM) that suppresses the target source and preserve
all the other interferences. Whereas in the target channel, a
preliminary estimate of the target can be obtained with a
generated DS beamformer. Two CVAEs are used to model
sources and iteratively update V . The demixing matrix W can
be updated based on the updated V . After that, an ideal ratio
Time-Frequency (T-F) mask is calculated using the extracted
interference mixture and the observed mixture. Finally, the
target signal can be extracted by calculating the product of
the T-F mask and target channel output.

B. CVAE-based target and interference models

The research on MVAE shows that CVAE is powerful in
source modeling [20]. To extract the target speaker in the
underdetermined case of multiple interfering speakers, it is
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Fig. 1: Framework of the proposed method.

desired to accurately model the single target speech and mixed
interfering speech. In this paper, we use two CVAEs to model
these two parts. We call these two CVAEs target CVAE
(TarCVAE) and interference CVAE (IntCVAE).

Figure 2 shows an illustration of CVAE. Let S =
{s(f, n)}f,n be the complex spectrogram of a particular sound
source and c be the class label of that source. The encoder
network generates a set of parameters for the conditional
distribution qϕ(z|S, c) of a latent space variable z given
input data S, whereas the decoder network generates a set
of parameters for the conditional distribution pθ(S|z, c). The
network parameters ϕ and θ are trained jointly using labeled
samples {Sm, cm}Mm=1, where cm is a one-hot vector that
denotes the corresponding class label indicating to which
class the spectrogram Sm belongs. In TarCVAE, we use a
single target speaker’s clean speech to train the model, and
the condition c is the class label associated with the IDs of
various speakers in a training dataset. For the IntCVAE, mixed
interfering speech is used to train the model, and the class label
represents the number of interfering speakers in the mixed
speech remaining except the target.

In the separation, only the decoder is used to model the
source spectrogram by estimating distribution parameters. The
decoder can output the variance matrix of sources, which can
be used in the estimation of the demixing matrix.

The following objective function is used to train the encoder
and decoder networks:

J (ϕ, θ) = E(S,c)∼pD(S,c)[Ez∼qϕ(z|S,c)[log pθ(S|z, c)]
−KL[qϕ(z|S, c)||p(z)]], (10)

where E(S,c)∼pD(S,c)[·] represents the sample mean over the
labeled data set and KL[·||·] is the Kullback–Leibler diver-
gence. The output distribution of the encoder qϕ(z|S, c) and
the prior distribution of z are given by Gaussian distributions:

qϕ(z|S, c) =
∏
k

N (z(k)|µϕ(k;S, c), σ
2
ϕ(k;S, c)), (11)

p(z) = N (z|0, I), (12)

where z(k), µϕ(k;S, c), and σ2
ϕ(k;S, c) denote the kth ele-

ment of z, µθ(S, c), and σ2
θ(S, c)), respectively. The decoder’s

output distribution pθ(S|z, c, g) is designed to be a complex
Gaussian distribution:

pθ(S|z, c, g) =
∏
f,n

NC(s(f, n)|0, v(f, n)), (13)

v(f, n) = g · σ2
θ(f, n; z, c), (14)

where σ2
θ(f, n; z, c) represents the (f, n)th element of the

decoder output σ2
θ(z, c) and g is a global-scale parameter of

the generated spectrogram.

C. Demixing matrix estimation with target DOA

In the iteratively demixing matrix estimation, the source
model v(f, n) of single speech and mixed interference speech
estimated by CVAE is used in the first term of the objective
function Eq. (9) given by Eq. (7). The update rule for opti-
mizing W(f) is derived on the basis of the idea adopted in
vectorwise coordinate descent (VCD), which is noteworthy for
its fast convergence, low computational cost, and nonrequire-
ment of the step-size parameter. We omit the derivation (see
[25] for details) here owing to the space limitation. The derived
update rules are summarized as

uj = D−1
j W(f)−1ej , (15)

ûj = λjbjD
−1
j dj , (16)

hj = uH
j Djuj , (17)

ĥj = uH
j Djuj , (18)

wj(f) =


1√
hj

uj + ûj (if ĥj = 0),

ĥj

2hj
[−1 +

√
1 +

4hj

|ĥj |2
]uj + ûj (o.w.).

(19)

where Dj = E[x(f, n)xH(f, n)/vj ] + λjdjd
H
j and ej is the

jth column of the identity matrix. TarCVAE and IntCVAE are
used to output the variances vj as in Eq. (7), whereas their
source model parameters are updated using backpropagation.
The global scale parameter G = {gj}j is updated as

gj ←
1

FN

∑
f,n

|wH
j (f)x(f, n)|2

σ2
θ(f, n; z, c)

. (20)
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Fig. 2: Illustration of CVAE used in MVAE.

The proposed algorithm is thus summarized as follows:
1. Train θ and ϕ using Eq. (10) in advance.
2. Initialize W and Ψ = {z, c}.
3. Iterate the following steps for each j:

(a) Update wj(f) using Eqs. (15) to (19).
(b) Update Ψ = {z, c} using backpropagation.
(c) Update gj by Eq. (20).
(d) Update v using Eq. (14).

D. Postprocessing based on T-F mask

Owing to the null constraint towards the target direction,
which can serve as a BM, the interference mixture except
the desired target can be extracted with high quality at the
corresponding channel, whereas the remaining part of the
mixture is extracted by a linear calculation, which is considered
as the initial extraction of the target. However, despite the
good quality of the interference mixture signal obtained, the
remainder of the original mixed signal obtained by linear
subtraction is not a good extraction result of the target signal.
Therefore, we designed a postprocessing method based on a
T-F mask to extract the target, which represents the ratio of
spectrogram energy of the interference mixture to the observed
mixture. The extracted target sT (f, n) is calculated as

IRM = s1(f, n)(1−
|s2(f, n)|2

|x(f, n)|2
). (21)

IV. EXPERIMENT EVALUATION

A. Experimental conditions

1) Traing of CVAEs: The training data was from the Wall
Street Journal (WSJ0) corpus [27]. We used the WSJ0 folder
si tr s (around 25 h) to train TarCVAE, which contains 101
speakers with 141 sentences per speaker. Speaker identities
were considered as the label c, which was represented as a
101-dimensional one-hot vector. Whereas for the training of
IntCVAE, the training data was generated by mixing clean
speech. We used nine groups of mixture speech of 2 to 10
speakers with 200 utterances per group (around 9 h). The
label was represented as a nine-dimensional one-hot vector
to indicate the number of speakers of the mixture.

2) Evaluation of the modeling power of trained CVAEs: To
evaluate the modeling ability of our trained CVAEs on single
speech signals and mixed speech signals, we took the clean
signal of one speaker and the mixed signal of two speakers as
the inputs of TarCVAE and IntCVAE and calculated the source-
to-distortions ratio (SDR) between the output reconstructed

Fig. 3: Configurations of sources and microphones, where △
and × denote the target position and two interference positions,
respectively, and α is the DOA of the target relative to the
microphone array.

TABLE I: Comparison between baselines and the proposed
method.

Method Application
scenario

Source
model

Target
selection

Processing
type

GCIVA Determined Laplace ! Linear
NL-GCIVA Underdetermined Laplace ! Nonlinear

MVAE Determined CVAE # Linear
Proposed Underdetermined CVAE ! Nonlinear

signal and the original signal. SDR is usually considered to
be an overall measure of how good a source quality is. The
higher the SDR is, the more similar the CVAE output signal
is to the original signal. In the evaluation of the modeling
ability of single speech, we randomly selected 50 utterances
as test signals from the WSJ0 folders si dt 05 and si et 05
where the number of speakers was 18. In the evaluation of
mixed speech modeling ability, 50 test signals mixed by two
different randomly selected speakers were generated.

3) Evaluation of TSE under underdetermined cases: In the
evaluation, test mixture signals were generated by simulating
two-channel recordings of three sources where the room im-
pulse responses (RIRs) were synthesized by the image source
method (ISM) [26]. Figure 3 shows an example of the relative
position of three sources and two microphones. The interval of
microphones was set at 5 cm. The evaluations were conducted
under three different reverberant conditions with reverberation
times (RT60) of 28 ms (an-echoic), 200 ms, and 470 ms. We
performed evaluations in three different relative positions of
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(a) Original clean speech. (b) Reconstructed single speech by TarCVAE. (c) Reconstructed single speech by IntCVAE.

(d) Original mixed speech. (e) Reconstructed mixed speech by TarCVAE. (f) Reconstructed mixed speech by IntCVAE.

Fig. 4: Magnitude spectrograms of reference sources and reconstructed sources by CVAEs.

sources: the target was located on the left, middle, and right
of two interference speakers. In the evaluation of each relative
position, three speakers were randomly selected from the WSJ0
folders si dt 05 and si et 05. The speakers were randomly
located at angles from 0 to 360 degrees. We mixed the images
of three speakers with SIR uniformly. We conducted 20 tests at
each relative position with different RT 60. The average length
of the test utterance was 10 seconds.

We chose GCIVA, and MVAE as the baseline methods. To
evaluate the effectiveness of the CVAE-based source model,
we also applied our designed T-F mask as nonlinear postpro-
cessing to GCIVA as a baseline because our proposed method
is similar to GCIVA in terms of framework except for the
source model and postprocessing. We call this baseline of
nonlinear GCIVA (NL-GCIVA), which could be used under
underdetermined cases because of the usage of our designed
T-F mask. Table I shows the differences between the baseline
methods and our proposed method.

We computed the SDR, source-to-interferences ratio (SIR),
and sources-to-artifacts ratio (SAR) between the extracted
target and the reference to evaluate the extraction performance.
SIR represent the amount of other sources that can be heard
in a source estimate, while SAR represent the amount of the
true source has with relation to unwanted artifacts. Higher
SDR, SIR, and SAR mean better extraction performance. The
alignment of the extracted target and the reference signal is
important in the evaluation. Since the DOA of the desired
speaker α was known, we set the signal in direction α as
the reference signal. For our method and other GC-based
baselines, the output at the corresponding channel was used

TABLE II: Average SDR [dB] of clean signal and mixed signal
output by different CVAEs.

single speech mixed speech
TarCVAE 18.25 13.65
IntCVAE 15.57 17.74

as the extracted target. For baselines without GC-based target
selection, we evaluated all separated signals and selected the
one with the best evaluation result as the extracted target.

B. Results

Table II lists the average SDR of reconstructed signals
of different CVAE for the input clean signal and mixed
signal. The results show that TarCVAE has a better modeling
ability for single speech signals than IntCVAE while IntCVAE
surpasses TarCVAE in the modeling for the mixed speech
signal. Figure 4 shows examples of the CVAE source model
fitted to the spectrogram of original clean speech and mixed
speech. As these examples show, the CVAE source model was
able to express single speech and mixed speech, and TarCVAE
is better in modeling the single speech signal while IntCVAE
is better in modeling the mixed speech signal.

Table III shows a summary of the evaluation results of
extraction performance. Average SDR, SIR, and SAR show
that our proposed method exceeded all the baseline methods,
especially in terms of SDR and SIR. The comparison between
GCIVA and NL-GCIVA reveals that, without improving the
source model, the improvement effect of the T-F mask on
GCIVA is very limited. The comparison between the proposed
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TABLE III: Average SDR, SIR, and SAR [dB] of three-
speakers case.

Method Anechoic
SDR SIR SAR

GCIVA 9.65 12.67 12.25
NL-GCIVA 9.98 13.05 12.38

MVAE 12.05 13.18 13.06
Proposed 15.65 23.39 12.65
Method RT60 = 200ms

SDR SIR SAR
GCIVA 8.64 11.75 11.80

NL-GCIVA 9.14 12.16 11.97
MVAE 10.84 12.28 12.02

Proposed 14.32 20.28 12.37
Method RT60 = 470ms

SDR SIR SAR
GCIVA 6.34 10.37 9.97

NL-GCIVA 7.13 11.45 10.07
MVAE 8.67 11.68 9.80

Proposed 12.58 18.74 11.76

method and NL-GCIVA reveals that a more powerful source
model makes a significant improvement in the extraction per-
formance. The comparison between the proposed method and
MVAE implied that the combination of directional information
and the CVAE source model has successfully contributed
to improving the extraction performance. By comparing the
performance of the proposed method with those of other
baseline methods under long RT60 = 470 ms, we found that
the proposed method still has high SDR and SIR scores, which
demonstrates that our proposed method has high robustness
under the condition of strong reverberation.

V. CONCLUSION

In this paper, we proposed a TSE method under underde-
termined cases, which combines geometric constraints and the
CVAE-based source model. The key features are that (1) the
designed framework can solve the underdetermined problem
by applying geometric constraints, and (2) this method takes
full advantage of the strong representation power of CVAE
to model the source of the target speech and interference
mixture. Experimental results revealed that our trained CVAEs
could represent the single source and mixture sources, and our
proposed method achieved better performance than the conven-
tional GCIVA method and MVAE under the underdetermined
condition.
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