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Abstract—This paper describes an unsupervised disentangled
representation learning method for musical instrument sounds
with pitched and unpitched spectra. Since conventional methods
have commonly attempted to disentangle timbral features (e.g.,
instruments) and pitches (e.g., MIDI note numbers and F0s),
they can be applied to only pitched sounds. Global timbres
unique to instruments and local variations (e.g., expressions
and playstyles) are also treated without distinction. Instead,
we represent the spectrogram of a musical instrument sound
with a variational autoencoder (VAE) that has timbral, pitch,
and variation features as latent variables. The pitch clarity or
percussiveness, brightness, and F0s (if existing) are considered to
be represented in the abstract pitch features. The unsupervised
disentanglement is achieved by extracting time-invariant and
time-varying features as global timbres and local variations from
randomly pitch-shifted input sounds and time-varying features
as local pitch features from randomly timbre-distorted input
sounds. To enhance the disentanglement of timbral and variation
features from pitch features, input sounds are separated into
spectral envelopes and fine structures with cepstrum analysis.
The experiments showed that the proposed method can provide
effective timbral and pitch features for better musical instrument
classification and pitch estimation.

I. INTRODUCTION

Musical instrument sounds are typically considered to be
characterized in terms of the three major elements of sound,
i.e., timbre, pitch, and volume. These elements should not
only be analyzed from musical instrument sounds but also
be manipulated in an interpretable manner in various tasks
such as automatic music transcription [1]–[3] and compo-
sition [4], musical instrument classification [5]–[8], timbre
modification [9], and style transfer [10]. Music is generally
performed with pitched instruments (e.g., strings and wind
instruments), unpitched instruments (e.g., drums), and singing
voices, all of which produce both pitched and unpitched sounds
in reality. We thus seek a disentangled representation learning
method that can deal with any kind of pitched and unpitched
sounds in a unified manner.

The standard approach to representation learning of musical
instrument sounds is to deal with only pitched sounds and
use a variational autoencoder (VAE) [11] for disentangling the
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Fig. 1. Proposed VAE with pitch shift, timbre distortion, and cepstrum analysis.
It learns, from musical instrument sounds, global timbral, local pitch, and local
variation features in unsupervised manner.

pitch and timbral features from those sounds [12]–[15]. Since
the timbral characteristics of musical instruments and their
temporal variations depending on expressions, playstyles, and
volumes are thus represented as the timbral features in a lump,
musical instrument sounds with different local variations are
treated as different instruments even though those sounds are
generated from the same instrument. In general, the semitone-
level pitches (MIDI note numbers) or fundamental frequencies
(F0s) of pitched sounds are directly used as the pitch features
for interpretability. This prevents this approach from being
applied to unpitched sounds.

To overcome these limitations, in this paper, we propose a
VAE-based representation learning method for timbre-pitch-
variation disentanglement of pitched and unpitched sounds
(Fig. 1). In music performance, we decide what instrument
to play and then dynamically control what and how to play.
While the instrument (global timbre) never changes, the sound
spectra vary over time according to the pitches (if existing)
and timbral variations. The VAE should thus be capable of
inferring three kinds of abstract latent features, i.e., global
(time-invariant) timbral features, local (time-varying) pitch
features, and local variation features from musical instrument
sounds, where the timbral features represent the information of
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instruments or sources and the variation features represent ex-
pressions, playstyles, and volumes. The continuous local pitch
features abstractly represent not only fundamental frequencies
but also pitch-related characteristics including pitch clarity or
percussiveness and brightness. This makes it possible to deal
with both pitched and unpitched sounds.

Our VAE consists of three cooperative encoders and a
decoder. The encoders infer from a given sound spectrogram
the global timbral features, the local variations, and the local
pitch features in this order. The decoder aims to reconstruct
the original spectrogram from the latent features. The key to
disentangled representation learning is to introduce random
perturbation with pitch shift and timbre distortion. We further
enhance the disentanglement by cepstrum-domain spectrum
separation. Specifically, the timbral features are inferred first,
and the variations are then inferred framewise in a timbre-
conditioned manner. To avoid extracting pitch-related infor-
mation, both features are inferred from the spectral envelopes
extracted from a randomly pitch-shifted version of the original
sound spectrogram. In contrast, the pitch features are inferred
framewise from the fine (harmonic) structures extracted from
a randomly timbre-distorted version of the sound spectrogram.

The main contribution of this study is to represent the
timbre and volume of sound in terms of global timbral and
local variation features. This representation mitigates the ill-
definition in conventional pitch-timbre disentanglement. The
latent timbral, pitch, and variation features can be learned
from any musical instrument sounds, not limited to pitched
sounds in an unsupervised manner. This is achieved by in-
troducing random perturbation and classical signal processing
techniques into analysis-and-synthesis formalism based on a
VAE. Experimental results show that this approach promotes
three-factor disentanglement and provides effective timbral and
pitch features for better musical instrument classification and
pitch estimation.

II. RELATED WORK

This section reviews recent progress in disentangled repre-
sentation learning of musical instrument sound. We also glance
at disentangled representation in differentiable digital signal
processing (DDSP) and speech processing.

A. Disentanglement of Musical Instrument Sounds

Generative models are major tools for disentangled represen-
tation learning. In music information retrieval, the disentangle-
ment of the pitch and timbre of music signals has been tackled
using autoencoders (AEs) and VAEs. Such disentanglement
was first investigated by Mor et al. [16]. They proposed
an AE-based music translation method that can change the
timbral characteristics of music signals without changing their
pitch characteristics. Bitton et al. [17] and Esling et al. [18]
then proposed a β-VAE that can handle many sounds in one
model and a VAE where the latent timbre space has a human
perception-like metric in it, respectively. Those studies dealt
with pitch-annotated music signals, while Hung et al. [19] first

TABLE I
COMPARISON OF EXISTING METHODS AND OUR METHOD.

Method Input Timbre Pitch Variation

Luo [12] Spectrogram Global Global —
Luo [13] Spectrum Global Global —
Tanaka [15] Spectrogram Local Local —
Luo [14] Spectrogram Global Local —
Ours Spectrogram Global Local Local

explored the disentangled representations of pitch and timbre
for music style transfer using encoder-decoder structures.

The works most related to our study are the series of studies
by Luo et al. [12]–[14] and Tanaka et al. [15]. They aimed to
disentangle the pitch and timbre of a musical instrument sound.
Note that the timbre is assumed to represent an instrument
here. We summarize the series in Table I, focusing on the dif-
ferences in format among their input and latent features. They
have commonly attempted to represent an instrument sound
using two kinds of disentangled features. Such disentanglement
methods, however, treat different temporal characteristics (e.g.,
expressions and playstyles) of the same instrument as different
instruments. In contrast, we consider conventional timbres
consisting of global and local components and provide new
features, i.e., variations. The variations should include the vol-
umes because the volumes are closely related to expressions.
Thus, our method can also cover all three elements of sound.

B. Disentangled Representation in DDSP

Differentiable digital signal processing (DDSP) [20]–[22]
has recently been gathering attention because of its high-
fidelity sound synthesis. It synthesizes musical instrument
sounds from the fundamental frequencies, timbral features,
and loudnesses. It can also infer these elements inversely
from the observed sound. At this point, we may regard it
as disentangled representations. However, DDSP limits its
scope to pitched harmonic sounds with concrete fundamental
frequencies because of its architecture and cannot handle
unpitched percussive sounds. It does not have global timbral
features either because it considers all three representations as
time-varying features.

C. Disentangled Representation in Speech Processing

From a technical point of view, our work is closely related
to the disentanglement of speech into multiple factors [23]–
[25]. Qian et al. [23] decomposed speech signals into rhythms,
pitches, timbres, and contents via three information bottle-
necks. Choi et al. [24] did so into linguistic, pitch, speaker,
and energy information by input waveform perturbation. Most
recently, Du et al. [25] disentangled the signals into emotional
styles and speaker identities. However, our research distin-
guishes itself from those in that the target disentangled features
and the perturbation methods are derived from the generation
process and properties specific to music performances and
instrument sounds.
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Fig. 2. Implementation of proposed VAE, consisting of three encoders to infer latent variables and decoder to generate sounds.
⊕

represents concatenation of
multiple tensors. zt, Zv, and Zp are sampled probabilistically with reparameterization trick during training and given deterministically in inference. Pitch shift
and timbre distortion are applied only during training.

III. PROPOSED METHOD

Our method trains a VAE to disentangle a musical in-
strument sound into global (time-invariant) timbral features
and local (time-varying) pitch and variation features in an
unsupervised manner (Fig. 2). Let x1:N be a matrix consisting
of N vectors xn (n = 1, . . . , N ). This VAE is trained to
represent a log-amplitude spectrogram X ≜ x1:T ∈ RF×T

of an isolated musical instrument sound, where F and T are
frequency and time-frame indices, respectively. The proposed
training forces the network to estimate latent representations
Z ≜ {zt, zv1:T , zp1:T } consisting of global timbres zt ∈ RDt

,
local variations Zv ≜ zv1:T ∈ RDv×T , and local pitch features
Zp ≜ zp1:T ∈ RDp×T from the observation, where D∗ (∗
represents “t,” “v,” or “p”) is the dimension of the latent space.

A. Generative Model

Following [12]–[14], we first formulate a generative process
of an observed log-amplitude spectrogram X. Our generative
model represents each time-frequency bin xft ∈ R of X as a
Gaussian distribution with latent variables Z:

xft ∼ N (xft|µθ,ft(zt, zv1:T , zp1:T ), σ
2), (1)

where µθ,ft(zt, zv1:T , zp1:T ) ∈ R is the output of a DNN
(decoder) with parameters θ, and σ2 ∈ R+ is a hyperparameter
representing the variance of the spectrogram. We assume
that each of the latent features follows a standard Gaussian
distribution:

zt ∼ N (zt | 0Dt , IDt), (2)

zv1:T ∼
T∏

t=1

N (zvt | 0Dv , IDv), (3)

zp1:T ∼
T∏

t=1

N (zpt | 0Dp , IDp), (4)

where 0D∗ is an all-zero vector of size D∗, and ID∗ is an iden-
tity matrix of size D∗×D∗. These priors make each dimension
of latent variables have independent features [26] with good
interpretability. This generative model itself, however, does not
guarantee that each of the three latent features corresponds
to the timbre, variation, and pitch features. We thus train the
model with random perturbation in an unsupervised manner.

B. Variational Inference for Unsupervised Training

Our goal is to train the DNN to maximize the log-marginal
likelihood log pθ(X). Because the DNN-based formulation
of our generative model makes log pθ(X) intractable, we
introduce an encoder network with parameters ϕ representing
qϕ(Z|X) to approximately calculate the log-marginal likeli-
hood [11]. Specifically, we train the encoder and decoder
networks to maximize the following lower bound of the log-
marginal likelihood L:

L = Eqϕ(Z|X)[log pθ(X|Z)]−DKL(qϕ(Z|X)||p(Z)), (5)

where DKL(·||·) represents the Kullback-Leibler (KL) diver-
gence. The parameters of the decoder θ are inferred in a
maximum-likelihood sense and those of the encoders ϕ are
optimized to minimize the KL divergence from qϕ(Z|X) to
pθ(Z|X) ∝ pθ(X|Z)p(Z). The lower bound can be calculated
analytically with Monte-Carlo approximation as in the training
of VAEs [11] and optimized with gradient ascent. In this paper,
we consider two types of encoding architectures: the timbre-
variation conditional pitch model and the timbre-variation
independent pitch model.

1) Timbre-Variation Conditional Pitch Model: In this
model, the pitch features are conditioned by the timbral and
variation features:

qϕ(Z|X) = qϕt(zt|X)qϕv(zv1:T |X, zt)qϕp(zp1:T |X,Zt,v), (6)
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where Zt,v ≜ {zt, zv1:T }. Each posterior is given by

qϕt(zt|X) = N (zt|µt
ϕt(X),diag(σt2

ϕt(X))), (7)

qϕv(zv1:T |X, zt)

=
T∏

t=1

N (zvt |[µv
ϕv(X, zt)]t,diag([σv2

ϕv(X, zt)]t)), (8)

qϕp(zp1:T |X,Zt,v)

=
T∏

t=1

N (zpt |[µ
p
ϕp(X,Zt,v)]t,diag([σ

p2
ϕp(X,Zt,v)]t)), (9)

where µt
ϕt(X) and σt2

ϕt(X) are the Dt-dimensional outputs of
the DNN with parameters ϕt, µv

ϕv(X, zt) and σv2
ϕv(X, zt) are

the DvT -dimensional outputs of the DNN with parameters ϕv,
and µp

ϕp(X,Zt,v) and σp2
ϕp(X,Zt,v) are the DpT -dimensional

outputs of the DNN with parameters ϕp. The notation [A]t
indicates the t-th time-frame of A. We approximately calculate
the expectation term of L with the reparameterization trick [11]
in the timbre-variation conditional pitch model as follows:

Eqϕ(Z|X)[log pθ(X|Z)]

≈ −1

2

F,T∑
f,t=1

{
log(2πσ2) +

1

σ2
(xft − ỹft)

2

}
, (10)

where ỹft = µθ,ft(z̃t, z̃v1:T , z̃p1:T ) is the spectrogram that is
reconstructed with the samples z̃t, z̃v1:T , and z̃p1:T from the
variational posterior q. These samples are obtained by the
following ancestral sampling:

z̃t ∼ qϕt(zt|X), (11)

z̃v1:T ∼ qϕv(zv1:T |X, z̃t), (12)

z̃p1:T ∼ qϕp(zp1:T |X, z̃t, z̃v1:T ). (13)

2) Timbre-Variation Independent Pitch Model: In this
model, we consider the pitch features to be independent of
the timbral and variation features. Thus, the formulation of
qϕ(Z|X) is given as

qϕ(Z|X) = qϕt(zt|X)qϕv(zv1:T |X, zt)qϕp(zp1:T |X), (14)

qϕp(zp1:T |X) =
T∏

t=1

N (zpt |[µ
p
ϕp(X)]t,diag([σ

p2
ϕp(X)]t)), (15)

where µp
ϕp(X) and σp2

ϕp(X) are the DpT -dimensional outputs
of the DNN with parameters ϕp, and the other terms are the
same as (7) and (8). We calculate the expectation term of L
as in (10) with the following samples:

z̃t ∼ qϕt(zt|X), (16)

z̃v1:T ∼ qϕv(zv1:T |X, z̃t), (17)
z̃p1:T ∼ qϕp(zp1:T |X). (18)

C. Random Perturbation for Disentanglement

Our encoders transform the observed spectrogram X into
the global timbral representations zt, local variation representa-
tions zv1:T , and local pitch representations zp1:T . We can see that

our model already has an inductive bias for disentanglement
in terms of the global and local features in its formulation.
The obtained representations, however, are not disentangled in
terms of the timbral/variation and pitch features because all the
encoders qϕ∗(·) receive the same input feature X, which has
both the original timbral/variation and pitch contents. Since
the VAE is trained such that the decoder can reconstruct an
observation from the latent features extracted by the encoders,
the encoders make the latent features keep as much information
as they can. Thus, the timbral/variation and pitch contents
naturally leak to the other latent spaces.

To make the latent features disentangled as much as pos-
sible, we introduce random perturbation techniques. We also
enhance the disentanglement by cepstrum-domain spectrum
separation. Specifically, we modify the inputs of the encoders
to two types of partially-randomized spectrograms f(X) and
g(X) as follows:

qϕt(zt|X) → qϕt(zt|f(X)), (19)
qϕv(zv1:T |X, zt) → qϕv(zv1:T |f(X), zt), (20)

qϕp(zp1:T |X,Zt,v) → qϕp(zp1:T |g(X),Zt,v), (21)
qϕp(zp1:T |X) → qϕp(zp1:T |g(X)), (22)

where f : RF×T → RF×T is a function that randomly
shifts the pitches of X and then extracts its envelopes, and
g : RF×T → RF×T is a function that randomly distorts the
timbres/variations of X and then extracts its fine structures.
The envelopes and fine structures correspond to low and high
quefrency regions of the cepstrum, respectively.

The random pitch shift and timbre distortion of the ob-
served spectrogram, on the one hand, make the corresponding
representations robust to the changed aspect of data. This is
because if the randomly changed features are extracted by
the encoders and used in reconstruction, they deteriorate the
likelihood. The cepstrum analysis techniques, on the other
hand, directly shut out the undesired information because the
timbral and variation characteristics of a sound are present in
the low quefrency regions, while the pitch characteristics are
in the high quefrency regions [27]. These perturbations can be
introduced without any label, and thus, we can train the VAE
in an unsupervised manner.

IV. EVALUATION

This section describes experiments conducted to evaluate
the performance of the proposed method in terms of the
disentanglement of timbral, pitch, and variation features.

A. Data

To evaluate the proposed method, we used musical instru-
ment sounds from the RWC Music Database [28]. Each file
is annotated with an instrument name and records the entire
range of pitches that can be produced by the instrument at
semitone intervals. We automatically split each file into sounds
with individual pitches by silence detection and removed the
silence regions at the beginning of each split sound by onset
detection. Out of all 88,889 obtained files, we selected 62,704
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files within the pitch range from A0 to C8 as the pitched
sounds and 2,970 files played by percussive instruments as
the unpitched percussive sounds. For evaluation, we randomly
split the pitched sounds into three sets: a training set (43,892
files), a validation set (9,406 files), and a test set (9,406 files).
Similarly, we split all selected sounds into three sets: a training
set (45,972 files), a validation set (9,851 files), and a test set
(9,851 files).

All sounds were sampled at 44.1 kHz, and we used only up
to the first two seconds of each sound. During training, we ran-
domly shifted the pitch and distorted the timbre of each sound
on the fly. Specifically, the pitch shift was conducted with L
semitones (−7 ≤ L ≤ 7), where L was selected randomly.
The timbre distortion was performed using pedalboard1, a
Python library by Spotify. We randomly applied two of the nine
presets (Chorus, Distortion, Phaser, LadderFilter, Highpass-
Filter, LowpassFilter, Reverb, GSMFullRateCompressor, and
Bitcrush) to the sound. We used a short-time Fourier transform
(STFT) with a Hann window of 4,096 samples and a shifting
interval of 441 samples (10 ms) to obtain spectrograms with
shapes of F = 2049 and T ≤ 201. Each spectrogram was
separated into its envelopes and its fine structures by liftering
its real cepstrum, where the cut-off position was set to the
100th coefficient. We normalized the spectrograms such that
the average amplitude of each spectrogram was one. We used
the Librosa library [29] in our implementation.

B. Model Configuration

Our VAE-based method utilized the bidirectional gated re-
current unit (BiGRU) architecture for its encoders and decoder
to capture the temporal characteristics of sounds, as shown
in Fig. 2. All the BiGRU layers used in the model had 2 ×
800 cells. The envelopes of the pitch-shifted sounds were fed
into the encoder for global timbres and the encoder for local
variations. The encoder for global timbres consisted of three
layers of BiGRUs, an average pooling layer along the time-
frame axis, and fully connected (FC) layers. Two FC layers
independently transformed 1,600 dimensions into Dt = 64
dimensions to represent the means and variances of the latent
variables. The encoder for the local variations consisted of
three layers of BiGRUs and FC layers. The global timbres were
tiled along the time-frame axis and fed into the last BiGRU
layer concatenated with the outputs of the second BiGRU layer
along the spatial axis. Two FC layers were the same as those
of the timbres (i.e., Dv = 64).

We considered two types of encoders for the local pitch
features, as we described in III-B. The architecture of the first
one for the timbre-variation conditional pitch model was quite
similar to that of the encoder for variations. The last BiGRU
layer took as input the tiled global timbres and local variations
concatenated with the outputs of the second BiGRU layer along
the spatial axis. The architecture of the second one for the
timbre-variation independent pitch model, in contrast, did not
use the timbres and variations. Two FC layers independently

1https://github.com/spotify/pedalboard

transformed 1,600 dimensions into Dp = 32 dimensions to
represent the means and variances of the latent variables in
both models. The decoder consisted of three layers of BiGRUs
and an FC layer. The tiled global timbral, local variational, and
local pitch features were all concatenated along the spatial axis
and fed into the decoder. The three FC layers that represent
variances of the latent variables were all passed through the
softplus. We set σ2 in (1) to 0.5.

In our experiment, the batch size was set to 32. The
dimensions Dt, Dv, and Dp were experimentally decided.
We used Adam [30] optimizer with an initial learning rate
of 0.0001, and it decayed exponentially by 0.01% per epoch.
We applied cyclical annealing of KL regularization [31] from
zero to one every ten epochs. The training was conducted for
200 epochs, and we used the model that achieved the best
validation loss.

C. Evaluation Criteria

We evaluated the degree of disentanglement by calculating
the instrument classification and pitch estimation accuracies in
each latent space. If the latent spaces are ideally disentangled,
one of the latent features (e.g., pitch features) should not in-
clude information on the other features (e.g., timbral/variation
features). We created k-nearest neighbor (k-NN) classifiers
using the two kinds of training sets along with their annotations
of instrument names and semitone-level pitches. We adopt
k-NN because DNN-based methods require additional model
building and parameter tuning in a space- and task-dependent
manner. In contrast, k-NN can directly reflect the structure of
each latent space with sufficient accuracy. The accuracy should
be high only in each corresponding space. We set k to 5 in all
the experiments.

In addition, we also measured the quality of spectrogram
reconstruction to monitor information loss via disentangled
representations. For the quality of spectrogram reconstruction,
we calculated the mean squared error (MSE) between the input
log-amplitude spectrogram X and the output log-amplitude
spectrogram Y ≜ µθ,ft(Z) per time-frequency bin for the test
data. Because we formulate the deep generative model as (1)
with fixed σ2 = 0.5, the MSE is equivalent to the negative
log-likelihood for X, and a lower MSE score indicates a better
reconstruction quality.

On the basis of both criteria, we compared our proposed
method and two conventional methods. Specifically, we com-
pared the scores of the proposed three-factor model with those
obtained for the local timbral and local pitch features and
those obtained for the global timbral and local pitch features.
We can see the proposed model as the first existing model
that masks local variation features zv1:T and as the second one
that masks global timbral features zt. We further conducted
our experiments for both the timbre-variation conditional pitch
model and the timbre-variation independent pitch model.

D. Experimental Results

Our method generally performed better in disentanglement.
Table II shows comparative evaluations of the conventional
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TABLE II
COMPARISON OF TWO-FACTOR DISENTANGLEMENT (CONVENTIONAL) AND THREE-FACTOR DISENTANGLEMENT (OURS).

Factors Input data Instrument classification Pitch estimation

Timbre Variation Pitch Pitched Perc. MSE ↓ Timbre ↑ Variation Pitch ↓ Timbre ↓ Variation ↓ Pitch ↑

✓ ✓ ✓ 0.557 — 0.659 (↑) 0.445 — 0.066 0.813
✓ ✓ ✓ 0.596 0.958 — 0.454 0.051 — 0.766
✓ ✓ ✓ ✓ 0.553 0.974 0.340 (↓) 0.395 0.107 0.024 0.751

✓ ✓ ✓ ✓ 0.558 — 0.686 (↑) 0.516 — 0.109 0.816
✓ ✓ ✓ ✓ 0.599 0.938 — 0.422 0.092 — 0.729
✓ ✓ ✓ ✓ ✓ 0.549 0.962 0.324 (↓) 0.416 0.145 0.054 0.777

↑ means higher is better, and ↓ means lower is better.

TABLE III
COMPARISON OF TIMBRE-VARIATION-CONDITIONED AND INDEPENDENT PITCH ENCODERS.

Input data Instrument classification Pitch estimation

Pitch encoder Pitched Perc. MSE ↓ Timbre ↑ Variation ↓ Pitch ↓ Timbre ↓ Variation ↓ Pitch ↑

Conditional ✓ 0.553 0.981 0.334 0.476 0.096 0.024 0.770
Independent ✓ 0.553 0.974 0.340 0.395 0.107 0.024 0.751

Conditional ✓ ✓ 0.548 0.954 0.320 0.514 0.132 0.053 0.776
Independent ✓ ✓ 0.549 0.962 0.324 0.416 0.145 0.054 0.777

Originals Timbral feature swaps Pitch feature swapsVariation feature swaps
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Fig. 3. Examples of feature-swapped spectrograms.

two-factor disentanglement and our three-factor disentangle-
ment methods. We used the timbre-variation independent
model for this comparison. The performance of the conven-
tional disentanglement of local timbral (depicted as variation)
and local pitch features was far inferior in instrument classi-
fication compared with the other disentanglement methods. In
contrast, our method performed better in instrument classifica-
tion and comparatively (for the pitched sounds) or better (for
the unpitched percussive sounds) in pitch estimation compared
with the two-factor method with global timbral and local pitch
features. We can also see that our method achieved the best
reconstruction qualities in terms of MSE score.

An interesting difference between the two-factor methods
and the proposed method is that our method succeeded in
utilizing percussive sounds much better than the others. Specif-
ically, the pitch estimation score improved in the latent pitch
space. This suggests that our model was capable of recognizing
unpitched sounds in addition to pitched sounds. From the
results so far, we can declare that our method disentangled the

three latent features more attractively with less information loss
compared with the existing methods with two latent features.

Table III shows comparative evaluations of the timbre-
variation conditional pitch and independent pitch versions of
the proposed method. Overall, their performances were quite
similar except for the score of instrument classification in
the latent pitch spaces. This result suggests that too much
information other than pitch characteristics was included in
the latent pitch space of the conditional version. Thus, we can
say that the independent version is superior to the conditional
version in disentanglement.

To investigate the effect of each feature in the proposed
three-factor disentanglement, we swapped corresponding fea-
tures between different musical instrument sounds (Fig. 3).
The global timbres seemed to control the time-invariant distri-
butions of the amplitude densities along the frequency axis ab-
stractly, while the local pitch features controlled time-varying
peak positions and sparseness along the same axis more
concretely. In contrast, the local variation features seemed to
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control time-varying expressions, playstyles, and also volumes
along the time-frame axis, as we expected.

V. CONCLUSION

This paper presented an unsupervised disentangled represen-
tation learning method for disentangling musical instrument
sounds into global timbral, local pitch, and local variation
features. Our model can handle various musical instrument
sounds, including unpitched percussive sounds. We introduced
random perturbation with pitch shift and timbre distortion
to achieve disentanglement in an unsupervised manner, and
we enhanced the disentanglement by cepstrum analysis. We
experimentally confirmed that our method disentangled the
three latent features more attractively with less information loss
compared with the existing methods with two latent features.
Our future work includes extending the proposed method to
treat longer-duration sounds. Such sounds can include silent
frames or pitch transitions and are thus much more challenging
to tackle. We also plan to expand our method to a semi-
supervised one to be able to utilize existing annotations during
training.
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