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Abstract—In this paper, we discuss an efficient way to realize
a low-latency convolution for real-time blind source separation
(BSS). In some real-time applications, such as a hearing aid,
both low complexity and low latency are necessary. To reduce
the computation for the low-latency convolution, a partitioned
convolution has been studied. It partitions a filter into multiple
blocks, convolves each block with a signal via the frequency
domain, and applies the overlap-add. In this paper, we focus
on uniform partitioning as a suitable way and introduce it
into real-time BSS. The complexity is estimated as the number
of multiplications and evaluated with actual implementation
on a Raspberry Pi 4B. The experimental results indicate that
this approach can reduce the execution time of convolution
calculation, and the optimum is obtained at a non-trivial block
length.

I. INTRODUCTION

In real-time blind source separation (BSS) [1]–[6], it is
necessary to reduce both the computational complexity and
the latency, especially in a small device such as a hearing aid.
In many multichannel BSS, demixing matrices are estimated in
the time-frequency domain, typically the short-time frequency
transform (STFT) domain. Therefore, one way to reduce the
latency is to use a short window. Although shortening the
window leads to the degradation of the BSS performance,
the combination with the dereverberation has been reported to
show good performance [1]. Another approach is a two-path
approach [2]. The demixing matrices are estimated in the time-
frequency domain, while the source separation is conducted
in the time domain by convoluting the input signal with
quasi-causal finite impulse response (FIR) filters, which are
obtained as the inverse fast Fourier transforms (FFTs) of the
demixing matrices and truncation. However, the convolution in
the time domain as the definition needs a considerable amount
of computation.

Since convolution is a fundamental operation in digital
signal processing, many studies have been performed for real-
time implementation [7]–[14]. One of the basic ideas is to
divide both the signal and the filter into small blocks, calculate
their convolution via the frequency domain, and perform the
over-lap add. This is referred to as partitioned convolution.
However, to the authors’ knowledge, its application to BSS
has not been considered.

Fig. 1. A photograph of the Raspberry Pi 4B and microphone array.

In this study, to realize the low-latency online BSS in small
devices [2], [15], we discuss how to reduce the computational
complexity of the convolution by introducing the partitioned
convolution. To avoid the complicated time-scheduling, we
focus on a uniform partitioning and evaluate the computational
complexity for a given acceptable latency. Also, we implement
this method to the real-time online BSS on a Raspberry Pi 4B
(Fig. 1) and evaluate the effectiveness by measuring processing
time.

II. METHODS FOR COMPUTING CONVOLUTION

A. Convolution in time domain

Let x[n], h[n], and y[n] be an input signal, an impulse
response of an FIR filter with length L, and an output signal
of the filter in the discrete time domain, respectively, where n
denotes the discrete time.

The convolution operation is defined as

y[n] =

L−1∑
l=0

x[n− l]h[l]. (1)

One way to compute the convolution is to calculate it as
defined above. We refer to it as linear convolution.

Let us consider the latency of this calculation. We do not
consider the intrinsic delay of the filter itself, but consider how
many input samples are required to compute a new output
sample, as the latency. Suppose that we already calculated
y[n − 1] from x[n − L + 2], . . . , x[n − 1]. Then, for newly
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calculating y[n], we only need to know x[n]. It means that
we can calculate one more output sample if we obtain one
more input sample. In this sense, this calculation does not
bring any latency. This is good for low-latency processing
and used in a low-latency real-time BSS system [2]. While,
when we evaluate the computational complexity by the number
of required multiplications, the computational complexity of
the linear convolution is proportional to L. This amount of
computation is not small, and constraints the length of the
FIR filter for real-time processing.

B. Convolution via Frequency-domain with single block

As well known in digital signal processing, the convolution
can be calculated via the frequency domain efficiently. Here we
explain a well-used way to compute the convolution between
an input signal with arbitrary length and an FIR filter with
length L by using FFT [16]. We refer to this as block
convolution.

First, we divide the input signal into segments of L samples
(the same length of the filter) disjointly. Hereafter, we refer to
the segment of L-sample input signal as a signal block. The
ith signal block is defined as

xi =
[
x[0 + iL] · · · x[L− 1 + iL]

]
. (2)

In the same way, let us define a vector representation of the
FIR filter as h =

[
h[0] · · · h[L− 1]

]
.

Then, L-point zeros are padded into both the signal block
and the filter, and they are transformed into the frequency
domain by the 2L-point FFT. Let Xi and H be the discrete
Fourier transform of the ith signal block and the filter, respec-
tively. Using the Hadamard product between them as

Yi = Xi ◦H, (3)

we obtain the convolution result of xi and the filter h by the
inverse FFT of Yi;

yi[n] = (xi ∗ h)[n]. (4)

Finally, by the overlap-add with the result at the previous
block, L-samples of the convolution result y[n] between x[n]
and h[n] are obtained as follows.

y[n+ iL] = yi[n] + yi−1[n+ L], n = 0, . . . , L− 1. (5)

This method can be calculated with less complexity, thanks to
the efficiency of FFT. On the other hand, this method requires
a waiting time to collect the L-sample input signals, called
“algorithmic latency”.

III. PARTITIONED CONVOLUTION

A. Problem formulation

In this paper, we assume that N < L samples are the accept-
able latency of real-time convolution. We consider reducing the
complexity of linear convolution between the N -sample input
signal x[n] and the L-sample filter h[n]. The conventional
block convolution [16] (between the signal of any length and
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Fig. 2. Overview of the partitioned convolution. The input signal x and the
FIR filter h are divided into multiple blocks xi and hj , respectively. They are
convolved via the frequency domain and overlap-added to obtain the output
signal y[n].

the L sample’s filter) can implement with low latency by zero-
padding, but the complexity increases. Therefore, we use the
partitioned convolution [17]). In this method, the filter is also
divided to reduce the complexity. Fig. 2 shows an overview of
processing.

B. Algorithm

Here we consider dividing the input signal into multiple N -
sample blocks where N < L and re-define the signal block.
The ith signal block is written as

xi =
[
x[0 + iN ] · · · x[N − 1 + iN ]

]
. (6)

In the partitioned convolution, the filter is also divided into
several blocks. We divide the L-tap filter into multiple M -
length blocks The jth filter block is written as

hj =
[
h [0 + jM ] · · · h[M − 1 + jM ]

]
, (7)
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Fig. 3. The number of multiplications required for the partitioned convolution
of an N -sample signal and a 1024-sample filter with various FFT lengths R.

where h[n] = 0 except for n = 0, . . . , L − 1. As a result,
we have J = ⌈L/M⌉ filter blocks, ⌈∗⌉ indicates the ceiling
function.

First, calculate the R = N+M -point FFT of xi and hj that
are zero-padded such that the length is R. Next, calculate the J
convolutions of xi and hj(j = 0, . . . , J − 1) using Hadamard
products and the inverse FFT. Then, calculate the convolution
of xi and the filter h[n] by the overlap-add of J convolutions
as the following equation:

yi[n] =

J−1∑
j=0

(xi ∗ hj)[n− jM ], (8)

where (xi ∗hj)[n] = 0 except for n = 0, . . . , N +M −1, and
yi[n] = 0 except for n = 0, . . . , N + L − 1. Finally, further
conduct the overlap-add of the current and previous convoluted
signals as follows:

y[n] =

∞∑
i=0

J−1∑
j=0

(xi ∗ hj)[n− iN − jM ]. (9)

By the partitioning and overlap-add of Eq. (9), we obtain the
signal equivalent to the linear convolution result of input signal
x[n] and FIR filter h[n].

The algorithmic latency of partitioned convolution is N
samples. It equals the time for the input signal to accumulate
for the signal block. Therefore, the shorter the signal block
length, the lower the latency in processing. When M = L, and
J = 1, this method becomes identical to the block convolution
that does not divide the filter [16]. In this method, partitioning
the filter with M < L can further reduce the complexity.

C. Evaluation of complexity

In this paper, we assume that the FFT length R is the power
of two, and the filter is time-invariant for simplicity. In the

following, we do not consider the complexity required for the
FFT of the filter since it can be calculated in advance.

Here, we consider the number of multiplications required
to convolute one signal block in each process. First, the FFT
of the signal block takes (R/2) log2 R times of multiplication.
Second, the Hadamard product between a signal block and J
filter blocks takes 2JR times of multiplication. In calculating
the Hadamard product, complex multiplication is carried out.
It involves four multiplications at a time. So, 4R times of
multiplication are required to calculate the Hadamard product
between a signal block and each filter block. Considering
that the negative frequency component is obtained by the
complex conjugate of the positive frequency component, the
total number of multiplications is 4R/2 = 2R, which is done
for the number of filter blocks J . Third, the inverse FFT takes
(JR/2) log2 R times of multiplication. It takes (R/2) log2 R
times in one block and performs J times. From the above,
the multiplications of the entire partitioned convolution are as
follows:

(1 + J)R

2
log2 R+ 2JR. (10)

On the other hand, the linear convolution for N samples
takes NL times of multiplication. Thanks to the efficiency of
FFT, the partitioned convolution can reduce the complexity
compared to the linear convolution. Furthermore, we can see
that Eq. (10) takes the minimum value at a specific R. As
an example, the complexity for the different block size N
and the the filter size L = 1024 is shown in Fig. 3. From
this figure, it can be seen that the complexity is minimum
when the FFT size R = 4N for each latency N . Considering
various implementation factors, R that minimizes Eq. (10) is
not always optimal on the actual computer. But in any case, this
equation suggests that further reducing complexity is possible
by dividing the filter into blocks.

IV. EVALUATION OF PROCESSING TIME ON RASPBERRY PI

A. Experimental condition
In this experiment, we used a Raspberry Pi 4B, which was

ran by the graphical user interface (GUI), and compared the
calculation time for the convolution while changing the signal
block length N and the FFT length R. We changed them as
N = 2k for k = 1, . . . , 8 and R = 2l for l = k + 1, . . . , 11,
and correspondingly determined the filter block length as M =
R − N . We implemented algorithms with C++ and used the
FFTW [18] for the FFT and the inverse FFT. The planner of
the FFTW was set to PATIENT. The time measurement was
done by chrono, the C++ library and was evaluated a mean
time of 10 trials for each condition. Note that the processing
time includes the FFT of the signal, the calculation of the
Hadamard product, the inverse FFT of the convolution result,
and the overlap addition; unlike them, we did not include the
calculation time of the FFT of the filter, assuming it is done
in advance. The input signal was a speech with 10 s and the
sampling frequency of 44.1 kHz. We used a low-pass filter
with the cutoff frequency of 400Hz and the tap length of 1024
samples as an FIR filter.
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Fig. 4. Processing time of the partitioned convolution for different block size N and FFT length R. The orange bar (left end) shows the result when the filter
block length is the same as the signal block length. The yellow bar (right end) shows the result when the filter is not partitioned. The blue bar represents the
shortest processing time.

B. Results

Fig. 4 shows the processing time when the signal block
length and the FFT length are changed. Comparing each signal
block length N (each graph), the larger N is, the shorter
the processing time. When the input signal and the FIR filter
as described in Section IV-A were used, the processing time
of the linear convolution in the time domain was 972ms.
Therefore, the processing time of the partitioned convolution
is shorter than that of the linear convolution when N = 16 or
longer with an adequate FFT length R. Then, focusing on the
FFT length (horizontal axis), each signal block length has an
FFT length which is the shortest processing time (blue-colored
bar). When N ≤ 8, the optimum FFT length was R = 8L, and
when 16 ≤ N ≤ 128, the optimum FFT length was R = 4L.
Since the filter block length does not affect the algorithmic
latency, we can choose the filter block length M = R − N
that will be the shortest processing time at each N .

A comparison of Fig. 3 and Fig. 4 shows that the processing
time is similar to the complexity. Note that this result may
change depending on the implementation.

V. EVALUATION OF USEFULNESS IN REAL-TIME BSS

A. Experimental condition

In this experiment, we applied the partitioned convolution
to the low-latency real-time BSS implemented on the Rasp-
berry Pi 4B and measured the processing time. In this sim-
ulation, we used the character-based user interface (CUI) for
staring the system on Raspberry Pi 4B to ignore the processing
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Fig. 5. Processing time of real-time BSS by the linear convolution in the time
domain (left) and the partitioned convolution with the optimum block size
(right). The breakdowns of the bars represent three processes: the AuxIVA
(green), the convolution (blue), and the FFT of the separation filter (red).

time for unnecessary operations e.g., drawing graphics. The
programming language and libraries were the same as the
experiment described in Section IV. Our real-time BSS is
based on online auxiliary-function-based independent vector
analysis (AuxIVA) [2]. The filter for separation is estimated
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in frequency domain, transformed into time domain by FFT,
and truncated the non-causal components for realizing the low
latency. In the original system [2], the resultant FIR filters for
separation are convolved with the input signal in time domain
by linear convolution. We replaced this by the partitioned
convolution, and compared the processing time.

We set the filter length as L = 512 samples and updated it
every time when the 1024-sample input signal was stored in the
buffer. The number of microphones was four and the sampling
frequency was 16 kHz. The input signal to the system was a
mixture of two speeches uttered by different speakers, and its
length was 20 s. We set the allowable delay as 64 samples; that
is, the signal block size N was 64 samples. By minimizing
Eq. (10) for given L and N , we chose R = 256 samples as
the optimum FFT length for redusing the complexity. After
that, we determined the the filter block size as M = R−N =
192. Although the AuxIVA calculates the separation filter for
four outputs, this implementation outputs one separated source.
Therefore, the processing time of filtering for only one output
was measured. We evaluated an average of the processing time
over 10 trials for each method.

B. Results

Fig. 5 shows that the processing time spent per the AuxIVA
filter update (green), the convolution (blue), and the FFT of
the separation filter (red). The processing time of the FFT
of the filter is present only in the partitioned convolution.
This is because the partitioned convolution requires the re-
transform of a time-domain quasi-causal filter by [2] to the
frequency-domain one, unlike the linear convolution. Both
have processing times shorter than 20 s, allowing for real-
time processing. The AuxIVA takes about 1400ms. In the
linear convolution, convolution calculation accounts for 63%
of the total processing time. On the other hand, the partitioned
convolution reduced the processing time of the convolution
(including the FFT of the filter) to about 18%. This is about
25% of the total processing time. Further processing time
savings can be expected if the FFTs of partitioned filters are
directly estimated in AuxIVA. It will be investigated in future.

Even though the linear convolution in the time domain
theoretically yields no algorithm delay, the actual system needs
some waiting time for other reasons. For example, the audio
signal is usually stored in an audio buffer and then processed.
In our system, the buffer size is typically about 64 samples.
It indicates that, in the case of our system, the partitioned
convolution with up to 64-sample filter block does not increase
the actual delay compared to the linear convolution and only
reduces the computational complexity. This is a strong advan-
tage of introducing the partitioned convolution to the real-time
BSS.

VI. CONCLUSIONS

In this paper, we introduced the partitioned convolution for
efficiently realizing low-latency real-time blind source separa-
tion. Adding to the evaluation of computational complexity by
the number of multiplication, we implemented the partitioned

convolution on the Raspberry Pi and confirmed the reduction in
the processing time. Reducing the amount of computation will
allow us to allocate device resources for other purposes, such
as increasing the number of channels, using longer filters, and
presenting the separated signal in stereo to maintain a sense
of localization.
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