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Abstract—In this paper, we present a short-time frequency esti-
mation method that can handle multiple sinusoids simultaneously.
Frequency estimation is a fundamental problem in audio analysis.
For realizing high-temporal resolution, an approach based on
a differential equation of a sinusoid, which is referred to as
the sinusoidal constraint differential equation (SCDE), has been
proposed. The SCDE-based method can efficiently and accurately
estimate frequency even from a short-term signal. However, in
terms of simultaneous estimation, up to two sinusoids have been
considered so far. In this paper, we extend this approach to
three or more sinusoids. Our experimental results show that
our method outperformed existing methods based on the discrete
Fourier transform.

Index Terms—Frequency estimation, sinusoidal modeling, au-
dio modeling, differential equation.

I. INTRODUCTION

Frequency estimation of multiple sinusoids has been in-
tensively studied as a fundamental problem in audio signal
processing with various applications [1]–[7]. A popular method
is the maximum likelihood estimation [8]–[12]. Although it
can accurately estimate the frequencies, it requires an iterative
optimization to solve a non-convex optimization problem.

More computationally efficient method is to leverage the
discrete Fourier transform (DFT) [13]–[18]. To improve the
estimation accuracy more than taking the spectral peak, various
methods have been developed, including the parabolic inter-
polation [13], [14] and the spectral reassignment [15], [16].
However, their estimation accuracy decreases as the frequency
resolution becomes low with a short-time signal. Fig. 1 shows
a sum of three sinusoids of 100 ms whose frequencies are 440
Hz, 460 Hz, and 480 Hz. Its spectrum with different signal
lengths are also depicted. The power spectrum of 10 ms cannot
separate the peak corresponding to each sinusoid because they
are in a single peak. In order to separate three peaks, a signal
length of 40 ms is required in this case.

Our motivation is the precise real-time pitch analysis of
polyphonic instrumental and vocal sounds. In music, their
overtones overlap to form harmony. However, whether con-
sciously or unconsciously, these overtones might mismatch
slightly due to tuning, the skill of the singer or performer,
musical intention, etc., and they can also fluctuate over time.
Thus, in order to capture the temporal variation of such very

Fig. 1. The sum of three sinusoids of 100 ms whose frequencies are 440 Hz,
460 Hz, and 480 Hz (bottom). Its spectrum with different signal lengths are
also depicted (top).

close frequency components, a method with high-frequency
resolution in a short time is required.

One promising method to estimate the frequency from
a short-time signal is the sinusoidal constraint differential
equation (SCDE)-based method [19]–[22]. When the signal
comprises one sinusoid, its second-order derivative is given by
the product of the squared frequency and the signal itself. The
SCDE-based method exploits this relation and estimates the
frequency efficiently. Although it handles only one sinusoid,
it was extended to the case with multiple sinusoids by com-
bining the DFT and applying SCDE to each sub-band. This
method assumes spectral peaks corresponding to sinusoids are
separable and thus require a sufficient-length signal, as shown
in Fig. 1.

In this paper, we present an extension of the SCDE-based
method that can handle multiple sinusoids simultaneously.
While the SCDE with two sinusoids was already presented
in [21], we explicitly extend it to the case of three or more
sinusoids. Based on the SCDE with multiple sinusoids, our
method estimates the frequencies by solving simultaneous
equations and finding the roots of a polynomial equation.
Since the method does not require extracting the sub-band that
contains one sinusoid, it can work with a short-term signal. We
experimentally investigate the relationship between the signal
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length and the estimation accuracy. The results show that the
SCDE-based method outperformed the DFT-based methods
when a signal is short.

II. SINUSOIDAL CONSTRAINT DIFFERENTIAL EQUATION

A. SCDE method for a single sinusoid

We first summarize the basis of SCDE method according to
[19], [20]. Let us consider a sinusoid x(t) given as

x(t) = A cos(ωt+ ϕ), (1)

where t denotes continuous time, and A, ω, ϕ respectively are
the amplitude, the frequency, and the phase of the sinusoid, re-
spectively. We consider the following second-order differential
equation:

d2

dt2
x(t) + ω2x(t) = 0. (2)

This equation is called the SCDE [19], [20] and holds for any
t ∈ R. Since it does not contain A and ϕ, the frequency esti-
mation can be performed independently of these parameters.

When a signal is a sum of sinusoids, the DFT is used to
select the sub-band containing each sinusoid, and the SCDE
is applied to each sub-band to estimate each frequency. This
method assumes that the frequencies are well separated. Hence,
it is not applicable to estimating the frequencies from a short-
time signal where the spectral peaks are not separable.

B. SCDE method for two sinusoids

We summarize the basis of SCDE method for two sinusoids
according to [21]. Let us consider a signal comprised of two
sinusoids:

x(t) = A1 cos(ω1t+ ϕ1) +A2 cos(ω2t+ ϕ2), (3)

where Ak, ωk, and ϕk denote the amplitude, the frequency,
and the phase of the kth sinusoid, respectively. Each sinusoid
satisfies the following equation as in Eq. (2):(

d2

dt2
+ ω2

k

)
Ak cos(ωkt+ ϕk) = 0, (4)

for k = 1, 2. Hence, the following equation holds for any
t ∈ R [21]: (

d2

dt2
+ ω2

1

)(
d2

dt2
+ ω2

2

)
x(t) = 0

⇔ d4

dt4
x(t) + α

d2

dt2
x(t) + βx(t) = 0, (5)

where α and β are defined as{
α = ω2

1 + ω2
2

β = ω2
1ω

2
2

. (6)

We used the linearity and commutativity of the operator
(d2/dt2 + ω2

k). To obtain ω1 and ω2 that satisfy Eq. (5), we
minimize the following objective function:

J(α, β) =

∫
Γ

[
d4

dt4
x(t) + α

d2

dt2
x(t) + βx(t)

]2
dt, (7)

where Γ denotes definite integral.

III. SINUSOIDAL CONSTRAINT DIFFERENTIAL EQUATION
FOR MORE THAN TWO SINUSOIDS

A. SCDE method for three sinusoids

We extended the SCDE to the case with three or more si-
nusoids. Let us consider a signal consisting of three sinusoids.
The SCDE with three sinusoids is defined by(

d2

dt2
+ ω2

1

)(
d2

dt2
+ ω2

2

)(
d2

dt2
+ ω2

3

)
x(t) = 0

⇔ d6

dt6
x(t) + α

d4

dt4
x(t) + β

d2

dt2
x(t) + γx(t) = 0, (8)

where α, β, and γ are defined as α = ω2
1 + ω2

2 + ω2
3

β = ω2
1ω

2
2 + ω2

2ω
2
3 + ω2

1ω
2
3

γ = ω2
1ω

2
2ω

2
3

. (9)

To obtain α, β, and γ that satisfy Eq. (8), we minimize the
following objective function:

J(α, β, γ) =∫
Γ

[
d6

dt6
x(t) + α

d4

dt4
x(t) + β

d2

dt2
x(t) + γx(t)

]2
dt. (10)

By setting the partial derivatives of J(α, β, γ) to zero, we can
obtain the optimal α, β, and γ as followsα

β
γ

 = −

S2,2 S1,2 S0,2

S2,1 S1,1 S0,1

S2,0 S1,0 S0,0

−1 S2,3

S1,3

S0,3

 . (11)

Here, for simplicity, we introduce the following definition of
the short-time covariance:

Sm,n =

∫
Γ

[
d2mx(t)

dt2m
d2nx(t)

dt2n

]
dt. (12)

According to Eq. (9), ω2
1 , ω2

2 , and ω2
3 are computed by

solving the following cubic equation for Ω:

Ω3 − αΩ2 + βΩ− γ = 0. (13)

This equation can also be solved in a closed-form.

B. General solution for SCDE method

For a sum of n sinusoids x(t), the following SCDE holds:(
d2

dt2
+ ω2

1

)
· · ·

(
d2

dt2
+ ω2

n

)
x(t) = 0

⇔ d2n

dt2n
x(t) + α1

d2(n−1)

dt2(n−1)
x(t)

+ · · ·+ αn−1
d2

dt2
x(t) + αnx(t) = 0, (14)

where α1, . . . , αn denote coefficients of differential equation.
To obtain α1, . . . , αn that satisfy Eq. (14), we minimize the
following objective function:

J(α1, . . . , αn) =

∫
Γ

[
d2n

dt2n
x(t) +

n∑
k=1

αk
d2(n−k)

dt2(n−k)
x(t)

]2

dt.

(15)
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In order to optimize α1, . . . , αn, we set the partial derivatives
of J(α1, · · · , αn) to zero and solve the obtained simultaneous
equations:

Sn,n−1 + α1Sn−1,n−1 + · · ·+ αnS0,n−1 = 0

Sn,n−2 + α1Sn−1,n−2 + · · ·+ αnS0,n−2 = 0

...
Sn,0 + α1Sn−1,0 + · · ·+ αnS0,0 = 0

, (16)

where Eq. (16) denotes the simultaneous equations, and we
can obtain(
α1 · · · αn

)T
= −B

−1
(
Sn,n−1 Sn,n−2 · · · Sn,0

)T
,

(17)
where T denotes the transpose, and B is a symmetry covari-
ance matrix such that the (i, j) entry is Sn−i,n−j . According to
the relation between ω2

1 , . . . , ω
2
n and α1, . . . , αn, ω2

1 , . . . , ω
2
n

are computed by solving the following nth order equation for
Ω:

Ωn + (−1)1α1Ω
n−1 + (−1)2α2Ω

n−2

+ (−1)3α3Ω
n−3 + · · ·+ (−1)n−1αn = 0. (18)

Eq. (18) can be solved in a closed-form under fourth-order
equations. The fifth-order or higher order equation can not
be solved algebraically, but we can efficiently compute the
solution by an iterative procedure.

C. Discussion on estimation of number of sinusoids

In this paper, we assume that the number of sinusoids
is known in advance, but here we mention how it can be
estimated. Suppose a set of (n+ 1) signals:(

d2n

dt2n
x(t),

d2(n−1)

dt2(n−1)
x(t), . . . ,

d2

dt2
x(t), x(t)

)
, (19)

when x(t) consists of only k sinusoids, which is less than n. As
an example, suppose the case when n = 3 and k = 2. Adding
to the fact that

(
d4

dt4x(t),
d2

dt2x(t), x(t)
)

satisfies Eq. (5),(
d6

dt6x(t),
d4

dt4x(t),
d2

dt2x(t)
)

also satisfies the same equation
since it is easily obtained by applying the operator d2/dt2 to
the both sides of Eq. (5). It indicates that two of four signals
are linearly independent in this case. By generalizing this, only
k of (n+1) signals in Eq. (19) are linearly independent. Then,
the rank of the covariance matrix of Eq. (19) becomes k, and
we could estimate the number of sinusoids from the rank (or
practically the number of large eigenvalues) of the covariance
matrix of Eq. (19). We will investigate this in the future.

IV. EXPERIMENTS

A. Comparisons with other methods on the signal length

In order to evaluate the relationship between the signal
length and estimation accuracy, we compare the SCDE-based
method with two DFT-based methods: the parabolic inter-
polation method [13], [14] and the spectral reassignment
method [15], [16]. The parabolic interpolation method finds
the spectral peak and using this main bin and its both side
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Fig. 2. Estimation error for the frequencies of 440Hz (top), 460Hz (middle),
and 480Hz (bottom) on the signal length by the three methods.

of neighbors, and fits a quadratic function to those bins. The
spectral reassignment method calculates the derivative of the
phase by using a time-differentiated window function. The
DFT-based methods estimate multiple frequencies by applying
the method to each spectral peak. For these methods, the
number of DFT points was set to 65536 by zero padding.
They were conducted only when the signal was long enough
to find the spectral peaks corresponding to all sinusoids. The
DFT-based methods were only applied when the signal was
longer than 40ms.

At first, we investigated the estimation accuracy with a sum
of three sinusoids whose frequencies were 440Hz, 460Hz, and
480Hz. The sampling frequency was 44.1 kHz. We used the
centered difference scheme and the quadrature method to com-
pute differential and integration. Fig. 2 shows the experimental
results for the three sinusoids, where the multiple-SCDE (M-
SCDE) indicates our method. The DFT-based methods resulted
in a large estimation error. This should be because they
are affected by the spectral leakage. In contrast, M-SCDE
accurately estimated all frequencies even when the signal was
2ms, which is shorter than the wavelength of the sinusoid of
440Hz.

B. Evaluation on noisy conditions

We evaluated the estimation accuracy under noisy condi-
tions. Assuming the combination of the proposed method with
a rough frequency decomposition, such as [19] and [22], we
used a band-limited noise with a bandwidth from 430Hz to
490Hz for a sum of three sinusoids whose frequencies are
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Fig. 3. Estimation accuracy for three sinusoids of 440Hz (top), 460Hz
(middle), and 480Hz (bottom) on the signal length by the three methods
under noisy conditions.

440Hz, 460Hz, and 480Hz. The signal length was 40ms.
Other experimental conditions were the same as in Section
IV-A. Fig. 3 shows the estimation error for each sinusoid under
noisy conditions. M-SCDE resulted in a smaller error than the
DFT-based methods.

V. CONCLUSION

In this paper, we presented an extension of the SCDE-
based methods for estimating the frequencies of three or more
sinusoids. Based on the SCDE for multiple sinusoids, we solve
the simultaneous equations related to the differentiation of the
signal. Then, the frequencies are estimated by finding the roots
of the polynomial equation on the basis of the simultaneous
equations. Our experimental results confirmed that our method
could accurately estimate the frequencies even when the DFT-
based methods did not work.

Our future work includes the combination of the proposed
method with frequency decomposition, such as [19] and [22].
The frequency decomposition will contribute to the noise
robustness. Also, unlike conventional DFT-based methods, a
rough decomposition, where one spectral peak contains a few
sinusoids, should be sufficient for our method.
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